
Firdaus E. Udwadia1

Emeritus Professor
Civil and Environmental Engineering,

and Aerospace and Mechanical Engineering,
University of Southern California,

Los Angeles, CA 90089
e-mail: feuusc@gmail.com

Ranislav M. Bulatovic
Faculty of Mechanical Engineering,

University of Montenegro,
Dzordza Vashingtona bb,

81000 Podgorica, Montenegro
e-mail: ranislav@ucg.ac.me

Uncoupling of General Linear
Multi-Degree-of-Freedom
Structural and Mechanical
Systems Through Quasi-
Diagonalization
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sufficient conditions for the simultaneous quasi-diagonalization of two symmetric matrices
and two skew-symmetric matrices by a real orthogonal congruence. This result is used to
study the uncoupling of general linear multi-degree-of-freedom (MDOF) structural and
mechanical systems described by arbitrary damping and stiffness matrices through
quasi-diagonalization, and real orthogonal coordinate transformations. The uncoupling
leads to independent subsystems, each having at most two degrees-of-freedom with a spe-
cific structure. The results encompass the different physical categories of linear MDOF
systems identified by engineers, mathematicians, and physicists and provide the necessary
and sufficient conditions for their maximal uncoupling. A total of 16 conditions are shown to
exist. However, the number of such conditions for physical systems that are commonly met
in nature as well as in aerospace, civil, and mechanical engineering are shown to be con-
siderably less, dwindling at times to two or three, thereby making the results applicable to
numerous high-order real-life linear MDOF dynamical systems. Several new analytical
results are obtained and corroborated through numerical examples.
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1 Introduction
The experimental and analytical studies of the Bernoullis (Johann

and Daniel) and Leonard Euler on linear multi-degree-of-freedom
(MDOF) potential systems led to the concepts of natural frequencies
of vibration, normal modes of vibration, and their superposition.
Based on the well-known theorem in linear algebra—namely, that
the necessary and sufficient (n&s) condition for a real orthogonal
matrix to exist so that two real symmetric matrices can be simulta-
neously diagonalized is that they commute—Caughey and O’Kelly
in 1965 extended the use of normal mode analysis to a damped
MDOF potential system whose symmetric damping matrix com-
mutes with its symmetric stiffness (potential) matrix [1]. This led
to the uncoupling of such damped MDOF systems into independent

single-degree-of-freedom subsystems through the use of a simple
real orthogonal transformation. Geometrically, orthogonal transfor-
mations are simply rotations and/or reflections. The uncoupling pro-
vided deeper physical insights into the system’s dynamical behavior
and proffered robust methods for computing its free and forced
response. In the following decades, this made modeling damped
MDOF structural or mechanical potential systems, using a sym-
metric damping matrix that commutes with its stiffness matrix,
somewhat of a norm in much of engineering research and practice
when dealing with damped potential systems.
Like Caughey and O’Kelly used the theorem in linear algebra

mentioned above for the uncoupling of damped potential systems
into low-dimensional independent subsystems, the uncoupling of
other categories of linear MDOF systems into low-dimensional
independent subsystems through the use of real orthogonal coordi-
nate transformations had to wait for further advances in linear
algebra. For example, one needed to find the necessary and suffi-
cient (n&s) conditions for a real orthogonal matrix to exist so that
a skew-symmetric and a symmetric matrix could be simultaneously
quasi-diagonalized (a term we explain later) to know if (when) a
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gyroscopic potential system can be uncoupled into lower-
dimensional subsystems using a real linear orthogonal coordinate
transformation. In Refs. [2,3], these n&s conditions are obtained
and it is shown that gyroscopic potential systems can be uncoupled
into at most two degrees-of-freedom independent subsystems when
the appropriate n&s conditions are met. Considering other catego-
ries of structural and mechanical systems, Ref. [4] extends these
results to damped gyroscopic MDOF potential systems wherein
the damping matrix is restricted to be symmetric. Noting that
many real-life potential systems may not have symmetric
damping matrices, and even if they did, their damping matrices
may not commute with their stiffness matrices, a different category
of MDOF potential systems that have arbitrary damping matrices
are considered in Ref. [5], and the n&s conditions for such
systems to be uncoupled through quasi-diagonalization into inde-
pendent subsystems, each of at most two degrees-of-freedom, are
obtained. Reference [6] deals with developing the n&s conditions
for uncoupling MDOF gyroscopic systems with arbitrary stiffness
matrices through quasi-diagonalization, yielding independent sub-
systems with at most two degrees-of-freedom; this includes the
important class of nonconservative systems with positional circula-
tory forces. Reference [7] considers the quasi-diagonalization and
uncoupling of MDOF systems with symmetric damping matrices
subjected to positional nonconservative forces. This article provides
a unified approach for obtaining the n&s conditions for the maximal
uncoupling of such systems and many others, modeled by linear
MDOF systems that commonly arise in aerospace, civil, and
mechanical engineering, as well as in nature.
The most general linear MDOF mechanical system is one in

which both the damping matrix and the stiffness matrix are arbi-
trary, and it is these systems that this article addresses. We consider
the general nonconservative system described by the equation

M̃q̈ + C̃q̇ + R̃q = f̃ (t) (1)

where q(t) and f̃ (t) are n-vectors (n by 1 column vectors),
MT =M > 0, and R̃ and C̃ are arbitrary constant matrices that
provide the position-dependent and velocity-dependent forces,
respectively. The real matrices M̃, C̃, and R̃ are each n by nmatrices,
and the dots indicate differentiation with respect to time, t. We shall
assume throughout this article that the mass matrix, M̃, is positive
definite.
Using the real transformation q(t) = M̃

−1/2
x(t), where M̃

−1/2

denotes the inverse of the unique positive-definite square root of
M̃, (1) reduces to the relation

ẍ + Dẋ + Rx = f (t) (2)

where

D = M̃
−1/2

C̃M̃
−1/2

(3)

R = M̃
−1/2

R̃M̃
−1/2

(4)

and

f (t) = M̃
−1/2

f̃ (t) (5)

We shall refer to the arbitrary n by n matrices D and R as the
damping and stiffness matrices, respectively, and the n-vector f (t)
as the force.

LEMMA 1. The real matrices C̃ and R̃ in (1) can each be
(uniquely) split into the sum of two n by n matrices, one of which
is symmetric and the other skew-symmetric. Likewise, the matrices
D and R.

Proof. See, for example, Ref. [8]. ▪

The matrices C̃ and R̃ in (1) can be uniquely split as

C̃ =
C̃ + C̃

T

2
+
C̃ − C̃

T

2
:= S̃ + G̃ (6)

and

R̃ =
R̃ + R̃

T

2
+
R̃ − R̃

T

2
= K̃ + Ñ (7)

where the symmetric parts of the matrices C̃ and R̃ are denoted by
the symmetric matrices S̃ and K̃, respectively, and their skew-
symmetric parts are denoted by G̃ and Ñ, respectively. Using (6)
and (7), (1) can then be rewritten as

M̃q̈ + (S̃ + G̃)q̇ + (K̃ + Ñ)q = f̃ (t) (8)

Similarly, the matrices D and R in (2) can be split as

D =
D + DT

2
+
D − DT

2
:= S + G (9)

and

R =
R + RT

2
+
R − RT

2
:= K + N (10)

where we have denoted the symmetric part of D by S and the skew-
symmetric part of D by G, as well as the symmetric part of R by K
and the skew-symmetric part of R by N.
Using (9) and (6) in (3), and (10) and (7) in (4) gives

S = M̃
−1/2

S̃M̃
−1/2

, G = M̃
−1/2

G̃M̃
−1/2

,

K = M̃
−1/2

K̃M̃
−1/2

, N = M̃
−1/2

ÑM̃
−1/2

(11)

Also, from (9) and (10), (2) can be written as

ẍ + (S + G)︸��︷︷��︸
D

ẋ + (K + N)︸���︷︷���︸
R

x = f (t) (12)

This equation is equivalent to (1) and we will be primarily using
it in what follows. Furthermore, in this article, the n by n matrices S
and K are always taken to be symmetric, and the n by n matrices G
and N are always taken to be skew-symmetric. Throughout this
article, when the n by n skew-symmetric matrix G(N) has rank
2m > 0, we will often denote this rank condition simply as
G(N) ≠ 0, for short. Note that this short-form notation, besides
saying that G(N) is a nonzero matrix, also includes its rank as
being 2m. These matrices G and N always refer to the skew-
symmetric (additive) parts of D and R, respectively, while S and
K always refer to the symmetric (additive) parts of D and R, respec-
tively. In the literature, the matrix N is often referred to as a circu-
latory matrix, and −Nx as the positional circulatory force.
We note that by setting the appropriate matrices to zero, (12)

encompasses several different categories of linear MDOF systems
commonly encountered in nature and in engineered systems [9].
Some examples are:

(i) Conservative potential systems (S = N = G = 0).
(ii) Gyroscopic potential systems (S = N = 0).
(iii) Gyroscopic nonconservative systems (S = 0).
(iv) Gyroscopic circulatory systems (S = 0, K = 0).
(v) Damped potential systems with symmetric damping matri-

ces (G = 0, N = 0).
(vi) Damped potential systems with arbitrary damping matrices

(N = 0).
(vii) Damped gyroscopic potential systems with symmetric

damping matrices (N = 0).
(viii) Damped system with an arbitrary damping matrix and a

purely circulatory positional force (K = 0).
(ix) Damped gyroscopic system with only a purely circulatory

positional force and a symmetric damping matrix (K = 0).
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(x) General nonconservative systems with velocity-dependent
damping forces and positional circulatory forces
(S, G, K, N ≠ 0).

As noted in Ref. [5], though the MDOF dynamical systems
described in (vi) and (vii) above have the same mathematical struc-
ture and may be thought as duals of one another, the character of the
physical forces that engender them is widely different. Likewise, the
dynamical systems (viii) and (ix), which may also be considered
duals of one another, are described by equations that have the
same structure. However, the physical forces that engender them
are widely different in character and origin.
Our overall goal is to obtain the n&s conditions for uncoupling

the MDOF system described by (12) through quasi-diagonalization
so that a real change of coordinates x = Qp, where Q is a real
orthogonal matrix, transforms it into a canonical (simplest) form
that is maximally uncoupled. We shall refer to p as the principal
coordinate.
If we assume that such a real orthogonal matrix Q exists, upon

multiplication of (12) from the left by QT and the use of this coor-
dinate change, we would obtain

p̈ + QT (S + G)Q ṗ + QT (K + N)Qp = QTf (t) (13)

so that our aim, from a linear algebra standpoint, then becomes
finding Q such that the matrices QTSQ, QTGQ, QTKQ, and
QTNQ are each direct sums with each diagonal block having a
minimal size.
In what follows, we will show that a real orthogonal matrixQ can

be found such that the dynamical system (12) can be uncoupled into
independent subsystems, each of which has no more than two
degrees-of-freedom when the matrices S, G, K, and N satisfy
certain necessary and sufficient conditions. These necessary and
sufficient (n&s) conditions, under which this uncoupling is guaran-
teed through a quasi-diagonalization of these four matrices, are
explicitly obtained in terms of commutators that involve them.
We first present and prove several preliminary theorems upon
which our results will rest.
The structure of this article is as follows. In Sec. 2, we present the

central theorems in linear algebra that obtain the n&s conditions for
the simultaneous quasi-diagonalization of two real symmetric and
two real skew-symmetric matrices using a real orthogonal congru-
ence. Particularizations of the central theorems when one of the
four matrices is zero are provided. Section 3 uses these results to
provide the n&s conditions in which systems described by (12)
that have arbitrary damping matricesD and arbitrary stiffness matri-
ces R can be uncoupled into independent subsystems that have at
most two degrees-of-freedom; a total of 16 conditions are obtained.
Section 3.1 deals with uncoupling various categories [9] of linear
MDOF systems in a unified manner. It shows the generality of
the n&s conditions obtained herein and their easy application to dif-
ferent categories of structural and mechanical systems. Depending
on the ranks of the skew-symmetric matrices G and N, commonly
found in real-life applications, the n&s conditions are shown to
drop to ten in number. In Sec. 3.2, we obtain further reductions in
the number of n&s conditions. For example, when the nonzero
eigenvalues of the skew-symmetric matrices G and N are distinct,
a common occurrence in many physical systems, the number of
n&s can drop to six, and then to four depending on the ranks of
G and N. Further reductions down to just two n&s conditions are
shown to result when K and N have posited form. Section 4 gives
the conclusions.

2 Fundamental Theorems
We begin by stating the four new fundamental theorems in linear

algebra that will be used later.

THEOREM 1. Given the n by n matrices G, N, K, and S, with
0 < Rank(G) = 2m ≤ n(G ≠ 0), there exists a real orthogonal

matrix Q such that

Γ = QTGQ = diag (β1J2, . . . , βmJ2, 0n−2m) (14)

N=QTNQ= diag (ν1J2, . . . , νmJ2, . . . , vn/2J2) for n even

= diag (ν1J2, . . . , νmJ2, . . . , v(n−1)/2J(n−1)/2, 0) for n odd

(15)

Λ = QTKQ = diag (λ1, λ2, . . . , λn) (16)

and

Σ = QTSQ = diag (σ1, σ2, . . . , σn) (17)

where βj > 0, j = 1, . . . , m, and all the v′js, λ
′
js, and σ′js are real

numbers if and only if the following set of conditions are satisfied:

[G, N] = 0, [K, S] = 0, [K, GN] = 0, [S, GN] = 0,
[K, GKG] = 0, [K, GSG] = 0, [K, NKN] = 0, [K, NSN] = 0,
[S, GKG] = 0, [S, GSG] = 0, [S, NKN] = 0, [S, NSN] = 0,
[K, G2] = 0, [S, G2] = 0, [K, N2] = 0, [S, N2] = 0

(18)

In (14) and (15), J2 =
0 1
−1 0

[ ]
and the matrices Γ and N are

called “quasi-diagonal”; the difference in symbols between
the quasi-diagonal matrix, N, and the arbitrary skew-symmetric
matrix, N, should be noted. In (18), we have used the commutator
notation in which, given any two n by n matrices A and B, the com-
mutator [A, B]:= AB − BA. ▪

We denote a diagonal matrix by diag(*), where “*” gives its
ordered diagonal elements.
When the matrices G, N, K, and S can be reduced to the forms

(14)–(17) by an orthogonal congruence, we shall say that these
matrices are simultaneously quasi-diagonalized by the real orthog-
onal matrix Q or simultaneously orthogonally quasi-diagonalized,
for short.

Remark 1. Equation (14) shows that the matrices Γ and G are
related by an orthogonal congruence; therefore, they have the
same eigenvalues. Noting that Γ is block diagonal, the n eigenval-
ues of G are then {± iβ1, ± iβ2, . . . , ± iβm, 0, . . . , 0}, with
βi > 0, i = 1, 2, . . . , m. Similarly, (15) shows that the eigen-
values of N are {± iv1, ± iv2, . . . , ± ivn/2} when n is even, and
{± iv1, ± iv2, . . . , ± iv(n−1)/2, 0} when n is odd. Likewise, the
λj’s in the diagonal matrix Λ shown in (16) are the eigenvalues of
K, and the σj’s in the diagonal matrix Σ shown in (17) are the eigen-
values of S.

The next theorem restricts the rank, 2m, of the matrix G so that
2m ≥ n − 2. This is equivalent to saying that the dimension n (of
the n by n matrices S, G, K, and N) exceeds the rank, 2m, of the
matrix G by at most 2, or, that n ≤ 2m + 2. Hence,
2m ≤ n ≤ 2m + 2.

THEOREM 2. Given the n by n matrices G, N, K, and S, with 0 <
Rank(G) = 2m ≤ n(G ≠ 0) and n ≤ 2m + 2, there exists a real
orthogonal matrix Q such that

Γ = QTGQ = diag (β1J2, . . . , βmJ2) for n = 2m

= diag (β1J2, . . . , βmJ2, 0) for n = 2m + 1

= diag ((β1J2, . . . , βmJ2, 0, 0) for n = 2m + 2

(19)

N = QTNQ = diag (ν1J2, . . . , νmJ2) for n = 2m

= diag (ν1J2, . . . , νmJ2, 0) for n = 2m + 1

= diag (ν1J2, . . . , νmJ2, vm+1J2) for n = 2m + 2

(20)

Λ = QTKQ = diag (λ1, λ2, . . . , λn) (21)
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and

Σ = QTSQ = diag (σ1, σ2, . . . , σn) (22)

where βj > 0, j = 1, . . . , m, and all the νj’s, λj’s, and σj’s are real
numbers if and only if the following set of conditions are satisfied:

[G, N] = 0, [K, S] = 0, [K, GN] = 0, [S, GN] = 0

(23)

[K, GKG] = 0, [K, GSG] = 0, [S, GKG] = 0, [S, GSG] = 0

(24)

[K, G2] = 0, [S, G2] = 0 (25)
▪

Remark 2. The set of commutators in (18) in Theorem 1 remains
unchanged when the matrices G and N are interchanged and/or
when the matrices K and S are interchanged. Also, the set of com-
mutators in (23)–(25) remain unchanged when the matrices K and S
are interchanged, but they change when G and N are interchanged.

Interchanging the roles of G and N in Theorem 1 and noting
Remark 2, we have the following theorem.

THEOREM 3. Given the n by n matrices G, N, K, and S, with
0 < Rank(N) = 2m ≤ n(N ≠ 0), there exists a real orthogonal
matrix Q such that

Γ = QTGQ = diag (β1J2, . . . , βmJ2, . . . , βn/2J2) for n even

= diag (β1J2, . . . , βmJ2, . . . , β(n−1)/2J(n−1)/2, 0) for n odd

(26)

N = QTNQ = diag (v1J2, . . . , vmJ2, 0n−2m) (27)

Λ = QTKQ = diag (λ1, λ2, . . . , λn) (28)

and

Σ = QTSQ = diag (σ1, σ2, . . . , σn) (29)

where vj > 0, j = 1, . . . , m, and all the β′js, λ
′
js, and σ′js are real

numbers, if and only if the set of commutation conditions (18) are
satisfied. The n eigenvalues of N are { ± iv1, ± iv2, . . . , ± ivm,
0, . . . , 0}.

Proof. Interchanging the roles of G and N in Theorem 1, we
obtain (26)–(29). Using Remark 2, the n&s conditions remain
unchanged. ▪

Remark 3. It is important to distinguish the situation when 0 <
Rank(G) = 2m ≤ n (recall, G ≠ 0, for short) and when the matrix
G is the zero matrix (G = 0). Theorem 1 deals with the matrices
G, N, K, and S, in which 0 < Rank (G) = 2m ≤ n (G ≠ 0); it
covers, of course, the situation when N = 0 (i.e., N is the zero
matrix). Thus, when G ≠ 0, application of Theorem 1 gives the
n&s conditions, (18), for the simultaneous orthogonal quasi-
diagonalization of the four matrices G ≠ 0, N, K, and S. On the
other hand, Theorem 3 deals with the same four matrices except
that now 0 < Rank (N) = 2m ≤ n (N ≠ 0); it covers the situation
when G = 0 (i.e., G is the zero matrix). Therefore, the n&s condi-
tions for the simultaneous orthogonal quasi-diagonalization of the
matrices G = 0, N, K, and S, with 0 < Rank (N) = 2m ≤ n
(N ≠ 0), can be obtained by applying Theorem 3 and setting
G = 0, again, in (18), since the two theorems share the same set
of n&s conditions. Thus we observe that, in effect, the set (18) of
n&s conditions can be used whether or not G = 0. The only differ-
ence between the situation when the matrix G ≠ 0 and G = 0 lies in
the quasi-diagonal forms that emerge from the resulting

simultaneous quasi-diagonalization engendered by the orthogonal
matrix Q. When G ≠ 0, we use Theorem 1, and the quasi-diagonal
forms in (14)–(17) emerge; when G = 0, we use Theorem 3, and the
quasi-diagonal forms described in (26)–(29) emerge, with Γ = 0
since G = 0.

Interchanging the roles again ofG and N in Theorem 2, we get the
following result.

THEOREM 4. Given the n by n matrices G, N, K, and S, with 0 <
Rank (N) = 2m ≤ n (N ≠ 0), and n ≤ 2m + 2, there exists a real
orthogonal matrix Q such that

Γ = QTGQ = diag (β1J2, . . . , βmJ2) for n = 2m

= diag (β1J2, . . . , βmJ2, 0) for n = 2m + 1

= diag (β1J2, . . . , βmJ2, βm+1J2) for n = 2m + 2

(30)

N = QTNQ = diag (v1J2, . . . , vmJ2) for n = 2m

= diag (v1J2, . . . , vmJ2, 0) for n = 2m + 1

= diag ((v1J2, . . . , vmJ2, 0, 0) for n = 2m + 2

(31)

Λ = QTKQ = diag(λ1, λ2, . . . , λn) (32)

and

Σ = QTSQ = diag (σ1, σ2, . . . , σn) (33)

where vj > 0, j = 1, . . . , m, and all the β′js, λ
′
js, and σ′js are real

numbers if and only if the following set of conditions are satisfied:

[G, N] = 0, [K, S] = 0, [K, GN] = 0, [S, GN] = 0

(34)

[K, NKN] = 0, [K, NSN] = 0, [S, NKN] = 0, [S, NSN] = 0

(35)

[K, N2] = 0, [S, N2] = 0 (36)

▪
The proofs of the theorems provide an explicit way to construct

the orthogonal matrix Q. Results for the simultaneous orthogonal
quasi-diagonalization of three of the four matrices, for example,
G, S, and K (the matrix triple {G, S, K}), using the central theorems
are also obtained in this section.
We first prove Theorems 2 and 4, and later prove Theorems 1 and

3, which are more general. To improve the clarity of the exposition,
we prove the sufficiency and the necessity of the commutation con-
ditions in each theorem separately since they require several auxil-
iary results. These auxiliary theorems and lemmas are provided
along the way.

Remark 4. The following five properties of commutators will be
useful in this article.

(1) From the definition of the commutator, we see that the n by n
zero matrix commutes with all n by n matrices so that
[0, B] = [A, 0] = 0. Also, [A, A] = [A2, A] = [A, A2] = 0.

(2) [A, B] = 0 implies that [B, A] = 0, since [B, A] = −[A, B].
(3) Two diagonal matrices always commute, and so the commu-

tator of the two diagonal matricesΛ1 andΛ2 yields [Λ1, Λ2]=
[Λ1Λ2 − Λ2Λ1] = 0. Consider the matrix A = aQΛ1QT ,
where a is a scalar, Q is an orthogonal matrix, and Λ1 is a
diagonal matrix; likewise, the matrix B = bQΛ2QT , where
b is a scalar and Λ2 is diagonal. Then the commutator
[A, B]= ab[QΛ1QT ,QΛ2QT ]= ab[QΛ1QTQΛ2QT −QΛ2QT

QΛ1QT ] = abQ[Λ1Λ2 − Λ2Λ1]QT = 0. The third equality
follows from QTQ = I, and last equality follows because
two diagonal matrices always commute.
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(4) The commutators have the following two properties:
[AB, C] = A[B, C] + [A, C]B and [A, BC] = [A, B]C+
B[A, C]. Using the first relation, if [A, B] = 0, then
[A2, B] = [AA, B] = A[A, B] + [A, B]A = 0, and similarly, if
[A, B] = 0, then [A, B2] = 0.

(5) If Λ = diag (λ1, λ2, . . . , λn), with all the λ′js distinct, and
[Λ, B] = 0, then the matrix B is a diagonal matrix. This is
because [Λ, B] = 0 implies ΛB = BΛ. Denoting the jth row
and kth column element of B by b jk, this relation yields
λjb jk = λkb jk or (λj − λk)b jk = 0. Since λj ≠ λk when j ≠ k,
we find that b jk = 0 when j ≠ k. Hence, the matrix B is
diagonal.

LEMMA 2. The ten commutation conditions in (23)–(25) imply the
pairwise commutation of the symmetric matrices

S, K, G2, GN, GKG, and GSG (37)

Proof. We begin by noting that [G, N] = 0 if and only if GN is a
symmetric matrix (see [6], Lemma 2). That the matrices K and S
commute with each of the remaining matrices listed in (37),
follows directly from (23)–(25). Using the algebra of commutators,
we show that the remaining matrices in this list also commute pair-
wise. Noting that [G, N] = 0, we find that

[G, GN] = G[G, N] + [G, G]N = 0

and therefore [G2, GN] = 0 (see Remark 4, part 4). Also, [GN, G] =
0 by Remark 4, part 2. We next find that

[G2, GKG] = [G2, G]KG + G[G2, KG]

= G[G2, KG] = G[G2, K]G + GK[G2, G]

= G[G2, K]G = 0

The second and fourth equalities follow from Remark 4, part 1,
and the last equality follows from (25). Using (25) and replacing
all occurrences of K by S above, we similarly get [G2, GSG] = 0.
Furthermore, recalling that [GN, G] = 0, we see that [GN, KG]=

[GN, K]G + K[GN, G] = [GN, K]G = 0; the last equality follows
from (23). Using this result, we now find that

[GN, GKG] = [GN, G]KG + G[GN, KG] = 0

Similarly, using (23) again, we get [GN, SG] = [GN, S]G+
S[GN, G] = [GN, S]G = 0, so that

[GN, GSG] = [GN, G]SG + G[GN, SG] = 0

Lastly, we show that the matrices GKG and GSG commute as
follows:

(GKG)(GSG) = GKG2SG = GG2KSG = GG2SKG = GSG2KG

= (GSG)(GKG)

In the second and fourth equalities above we have used (25), and
in the third equality we have used (23). ▪

LEMMA 3. Assume that 0 < Rank (G) = 2m ≤ n (G ≠ 0) and that
there exists an orthogonal matrix Q̂ such that

(a) Γ = Q̂TGQ̂ = diag (β1J2, β2J2, . . . , βmJ2, 0n−2m) (38)

where βj > 0, j = 1, . . . , m, J2 =
0 1
−1 0

[ ]
, 0n−2m is the (n − 2m)

by (n − 2m) zero matrix, and J22 = −I2, I2 being the 2 by 2 identity
matrix.

(b) �N = Q̂TNQ̂ = diag (v1J2, v2J2, . . . , vmJ2, N̂n−2m) (39)

where vj, j = 1, . . . , m, are real numbers, and N̂n−2m is an (n − 2m)
by (n − 2m) skew-symmetric matrix.

(c) �Λ = Q̂TKQ̂ = diag (λ1, λ2, . . . , λ2m, K̂n−2m) (40)

where λj, j = 1, . . . , m, are real numbers, and K̂n−2m is an (n − 2m)
by (n − 2m) symmetric matrix.

(d) �Σ = Q̂TSQ̂ = diag (σ1, σ2, . . . , Ŝn−2m) (41)

where σj, j = 1, . . . , m, are real numbers, and Ŝn−2m is an (n − 2m)
by (n − 2m) symmetric matrix. The numbers vj, λj, and σj could be
zero. We shall assume throughout this article that βj > 0,
j = 1, . . .m, something that can always be achieved by suitable
permutation.
Then the matrices Γ2, Γ�N, Γ�ΛΓ, and Γ�ΣΓ are diagonal.

Proof. From (38) to (41), we obtain

Γ2 = Q̂TGQ̂Q̂TGQ̂ = Q̂TG2Q̂

= −diag (β21I2, β
2
2I2, . . . , β

2
mI2, 0n−2m)

(42)

Γ�N = Q̂TGQ̂Q̂TNQ̂ = Q̂T (GN)Q̂

= −diag (β1v1I2, β2v2I2, . . . , βmvmI2, 0n−2m)
(43)

Γ�ΛΓ = Q̂T (GKG)Q̂

= −diag (β21λ2, β
2
1λ1, . . . , β

2
mλ2m, β

2
mλ2m−1, 0n−2m)

(44)

and

Γ�ΣΓ = Q̂T (GSG)Q̂

= −diag (β21σ2, β
2
1σ1, . . . , β

2
mσ2m, β

2
mσ2m−1, 0n−2m)

(45)

Each of the matrices in (42)–(45) are diagonal and commute pair-
wise (see Remark 4, part 3). ▪

We are now ready to prove the following preliminary result.

LEMMA 4. Assume that 0 < Rank (G) = 2m ≤ n (G ≠ 0). If the
ten commutation conditions given in (23)–(25) are satisfied by the
n by n matrices G ≠ 0 N, S, and K, then there exist two real orthog-
onal unit vectors q1 and q2 such that the following relations are sat-
isfied:

Gq1 = −β1q2, Gq2 = β1q1, β1 > 0 (46)

Nq1 = −v1q2, Nq2 = v1q1 (47)

Kq1 = λ1q1, Kq2 = λ2q2 (48)

Sq1 = σ1q1 Sq2 = σ2q2 (49)

where v1, λ1, λ2, σ1, and σ2 are real numbers.

Proof. Since the conditions (23)–(25) are satisfied, by Lemma 2,
the symmetric matrices S, K, G2, GN, GKG, and GSG pairwise
commute. Then according to a well-known result (see, for
example, Ref. [8]), these matrices have n common linearly indepen-
dent real eigenvectors. Let σ(G) = ( ± iβ1, . . . , ± iβm, 0, . . . , 0),
βj > 0, j = 1, 2, . . . , m, be the spectrum (denoted by σ(□)) of the
skew-symmetric matrix G. Then σ(G2) = (−β21, −β

2
1, . . . , −β2m,

−β2m, 0, . . . , 0). With no loss of generality, let q1 be a (real)
common unit eigenvector of the pairwise commuting matrices
such that

G2q1 = −β21q1, Kq1 = λ1q1, Sq1 = σ1q1 (50)

GNq1 = α1q1, GKGq1 = μ1q1, GSGq1 = η1q1 (51)

where β1 > 0 is a real number, and λ1, σ1, α1, μ1, and η1, are real
numbers (some of which could be zero).
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Multiplying each of the relations in (51) by G from the left, we
get

G2Nq1 = α1Gq1, G2KGq1 = μ1Gq1, G
2SGq1 = η1Gq1

Noting that [G2, N] = [K, G2] = [S, G2] = 0 (i.e., the respective
pairs commute) in which the first relation follows from [G, N] =
0 (Remark 4, part 4), we obtain

N(G2q1) = α1Gq1, KG(G2q1) = μ1Gq1, SG(G
2q1) = η1Gq1 (52)

Using the first relation in (50), (52) becomes

Nq1 = −α1β−21 (Gq1), K(Gq1) = −μ1β
−2
1 (Gq1),

S(Gq1) = −η1β−21 (Gq1) (53)

From the last two relations above, we infer that −(Gq1) is a real
eigenvector of both K and S; the negative sign before (Gq1) is
chosen for convenience, as we will see later. The length of this
vector is given by

‖Gq1‖ =
											
qT1G

TGq1

√
=

												
−q1(G2q1)

√
=

								
β21q

T
1q1

√
= β1 > 0

In the second equality above, we have used the fact that G is
skew-symmetric (GT = −G), and in the third equality we have
used the first relation in (50). Dividing the eigenvector −(Gq1) by
its length, we get

q2 =
−(Gq1)

β1
(54)

which is then a (real) common unit eigenvector of K and S. More-
over, the unit vectors q1 and q2 are orthogonal. This is because
qT1q2 = −qT1Gq1/β1 = 0, since G is skew-symmetric and the numer-
ator is zero. From (54), we note that Gq1 = −β1q2.
The relations in (53) can now be rewritten as

Nq1 = −α1β−21 (Gq1) = α1β
−1
1 q2 = −v1q2, Kq2 = λ2q2, Sq2 = σ2q2

(55)

where we have denoted v1:= −α1β−11 , λ2:= −μ1β−21 , and
σ2:= −η1β−21 . Furthermore, multiplication of (54) by N from the
left gives

Nq2 =
−NGq1

β1
=
−GNq1

β1
= −α1β−11 q1 = v1q1 (56)

The second equality follows sinceG and N commute (see the first
relation in (23)), and the third follows from the first relation in (51).
The first relation in (55) along with (56) then gives

Nq1 = −v1q2, Nq2 = v1q1 (57)

and the last two relations in (50) and the last two in (55) can be sum-
marized as

Kq1 = λ1q1, Kq2 = λ2q2 and Sq1 = σ1q1, Sq2 = σ2q2 (58)

Also, upon multiplication by G on the left, relation (54), gives

Gq2 =
−G2q1
β1

=
β21q1
β1

= β1q1 (59)

where we have used the first relation in (50) to get the second equal-
ity. Equations (54) and (59) can be summarized as

Gq1 = −β1q2, Gq2 = β1q1 (60)

Equations (60), (57), and (58) prove the lemma. ▪

THEOREM 5. If the ten commutation conditions given in (23)–(25)
are satisfied, a real orthogonal matrix Q̂ exists such that the n by n
matrices G ≠ 0, N, S, and K can be simultaneously transformed by
an orthogonal congruence to yield the forms given in (38)–(41).

Proof. Since the commutation relations (23)–(25) are satisfied, by
Lemma 2 the matrices listed in (37) commute pairwise. We need
to show that an orthogonal matrix Q̂ exists such that
Q̂TGQ̂ = Γ, Q̂TNQ̂ = �N, Q̂TKQ̂ = �Λ, and Q̂TSQ̂ = �Σ where Γ, �N,
�Λ, and �Σ are as in (38)–(41).
Lemma 4 shows that when G ≠ 0 and conditions (23)–(25) are

satisfied, then we can find two orthogonal unit vectors q1 and q2
such that the relations (46)–(49) are satisfied. We now construct
an n by n orthogonal matrix using these two unit vectors q1 and
q2 found in this lemma as the first two columns of an orthogonal
matrix

Q1 = [q1, q2, q3, . . . , qn] (61)

the remaining orthogonal unit vectors {q3, . . . , qn} being chosen
arbitrarily so that the relation QT

1Q1 = In is satisfied.
We now look at the structure of the four matrices QT

1GQ1,
QT

1NQ1, QT
1KQ1, and QT

1 SQ1, focusing on the first two rows
(columns) of these matrices. Using (46) in Lemma 4, recalling
that GT = −G, and denoting δ jk by the Kronecker delta, we have,
for k = 1, 2, . . . , n,

qT1Gqk = −qTk Gq1 = β1q
T
k q2 = β1δ2k and

qT2Gqk = −qTk Gq2 = −β1qTk q1 = −β1δ1k (62)

The relations in (62) give the elements of the first two rows
(columns) of the matrix QT

1GQ1. Similarly, using (47), for
k = 1, 2, . . . , n, we get the elements of the first two rows
(columns) of QT

1NQ1 as

qT1Nqk = −qTk Nq1 = ν1q
T
k q2 = ν1δ2k and

qT2Nqk = −qTk Nq2 = −ν1qTk q1 = −ν1δ1k (63)

Using (48) and (49), for k = 1, 2, . . . , n, the elements of the first
two rows (columns) of QT

1KQ1 and QT
1SQ1 are given, respectively,

by

qT1Kqk = qTk Kq1 = λ1q
T
k q1 = λ1δ1k and

qT2Kqk = qTk Kq2 = λ2q
T
k q2 = λ2δ2k (64)

and

qT1Sqk = qTk Sq1 = σ1q
T
k q1 = σ1δ1k and

qT2Sqk = qTk Sq2 = σ2q
T
k q2 = σ2δ2k (65)

From (62) to (65), the structures of the four matrices, QT
1GQ1,

QT
1NQ1, QT

1KQ1, and QT
1 SQ1, are thus found to be as follows:

and

Since the (n− 2) by (n− 2) matrices, Ĝn−2, N̂n−2, K̂n−2, and Ŝn−2,
satisfy the same conditions as G, N, K, and S, this procedure contin-
ues in the same manner, and after m steps we conclude that there
exists an orthogonal matrix Q̂ such that

Γ = Q̂TGQ̂ = diag β1
0 1
−1 0

[ ]
, . . . , βm

0 1
−1 0

[ ]
, 0n−2m

( )
(66)

�N = Q̂TNQ̂ = diag ν1
0 1
−1 0

[ ]
, . . . , νm

0 1
−1 0

[ ]
, N̂n−2m

( )
(67)

�Λ = Q̂TKQ̂ = diag (λ1, λ2, . . . , λ2m, K̂n−2m) (68)
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and

�Σ = Q̂TSQ̂ = diag (σ1, σ2, . . . , σ2m, Ŝn−2m) (69)

which are the same as (38)–(41), in which we recall that 0n−2m,
N̂n−2m, K̂n−2m, and Ŝn−2m are each (n − 2m) by (n − 2m) matrices,
N̂n−2m is skew-symmetric matrix, and K̂n−2m and Ŝn−2m are sym-
metric matrices. Since K and S commute, the matrices K̂n−2m and
Ŝn−2m in (68) and (69) commute with each other. ▪

Remark 5. The proof of Theorem 5 is constructive in that it gives
an explicit method for the construction of a real orthogonal matrix Q̂
to obtain the relations in (66)–(69). The column vectors q1 and q2
are found as in Lemma 4, and the unit orthonormal vectors
{q3, . . . , qn} in (61), for example, can be found computationally
using a robust Gram-Schmidt orthogonalization algorithm or a
QR algorithm.

Remark 6. It is clear from Lemma 4 and Theorem 5 that the roles of
the matrices G and N can be interchanged, with 0 < Rank (N) =
2m ≤ n (N ≠ 0). Also, the roles of K and S can be interchanged.

We next prove a lemma that will be used later.

LEMMA 5. Let K and S be (any) two 2 by 2 symmetric matrices
that commute with one another, i.e., [K, S] = 0. Then, the ten con-
ditions given in (23)–(25) are satisfied for any two arbitrary 2 by 2
skew-symmetric matrices G and N.

Proof. Consider any 2 by 2 skew-symmetric matrices G = βJ2 and
N = vJ2, and any orthogonal 2 by 2 matrix

Q =
q11 q12
q21 q22

[ ]
:= [q1q2]

whose determinant, Δ, is 1. Noting that q1qT2 − q2qT1 = ΔJ2 = J2,
we then have

QGQT = βQJ2Q
T = β[q1q2]J2

qT1
qT2

[ ]
= β(q1q

T
2 − q2q

T
1 ) = βJ2 = G

(70)

From the first and last equality, we observe that G = βQJ2QT ;
similarly,

N = QNQT and N = vQJ2Q
T (71)

so that GN = βvQJ22Q
T = −βvI. Furthermore, [G, N] = βvQ

[J22 − J22 ]Q
T = 0.

Since K and S commute, there is a real 2 by 2 orthogonal matrixQ
such that K = QΛQT and S = QΣQT where Λ = diag (λ1, λ2) and
Σ = diag (σ1, σ2) [8]. We order the two columns of this matrix Q
so that its determinant is unity, and we now choose this orthogonal
matrix Q, which simultaneously diagonalizes K and S, in (70) and
(71). Noting that J22 = −I2, we then find that

K = QΛQT , S = QΣQT , N = QNQT

G2 = β2QJ2J2Q
T = −β2QI2QT ,

GN = βvQJ2J2Q
T = −βvQI2QT = NG,

GKG = β2QJ2Q
TQΛQTQJ2Q

T = β2QJ2ΛJ2QT

= Q
−β2λ2 0

0 −β2λ1

[ ]
QT (72)

and similarly

GSG = β2QJ2ΣJ2QT = Q
−β2σ2 0

0 −β2σ1

[ ]
QT

Using Remark 4, part 3, the conditions in (23)–(25) are automat-
ically satisfied. ▪

We are now ready to extend Theorem 5, while still keeping the
same assumptions made in it, by considering a further decompo-
sition, when G ≠ 0, of the matrices N̂n−2m, K̂n−2m, and Ŝn−2m
shown in (67)–(69) into quasi-diagonal forms when conditions
(23)–(25) are satisfied. We first consider the simpler situation
when n ≤ 2m + 2, i.e., the dimension, n, of each of the n by n
matrices G ≠ 0, N, S, and K does not exceed the rank, 2m, of
G by more than 2.
Consider first the case when n = 2m. Then the matrices N̂n−2m,

K̂n−2m, and Ŝn−2m disappear from (67) to (69), and we see that the
real orthogonal matrix Q̂ obtained in Theorem 5 then simulta-
neously quasi-diagonalizes the four matrices G, N, S, and K, as in
the statement of Theorem 2, using in it Q = Q̂ that was obtained
in Theorem 5.
Next, consider the case when n = 2m + 2 and the commutation

conditions in (23)–(25) are satisfied. Then the matrices N̂n−2m,
K̂n−2m, and Ŝn−2m in (67)–(69) are each 2 by 2 matrices. Note that
N̂n−2m is skew-symmetric since N is skew-symmetric. Also, the
symmetric 2 by 2 matrices, K̂n−2m and Ŝn−2m, commute (because
K and S commute), therefore there exists a real orthogonal 2 by 2
matrix, �Q, with determinant 1, such that �QT

K̂n−2m �Q = diag (λ2m+1,
λ2m+2), �Q

T
Ŝn−2m �Q = diag (σ2m+1, σ2m+2), and �Q

T
N̂n−2m �Q = N̂n−2m

(see (72), Lemma 5). Thus, when n = 2m + 2, having obtained
the n by n orthogonal matrix Q̂ as in Theorem 5, the real orthogonal
matrix

Q = Q̂
I2m 0
0 �Q

[ ]
= Q̂diag (I2m, �Q) (73)

yields

QTGQ = diag (β1J2, . . . , βmJ2, 0, 0),

QTNQ = diag (v1J2, . . . , vmJ2, N̂n−2m)

and

QTKQ = diag (λ1, . . . , λ2m, λ2m+1, λ2m+2),

QTSQ = diag (σ1, . . . , σ2m, σ2m+1, σ2m+2)

as in the statement of Theorem 2, for this case. Note that the last
two diagonal elements in QTGQ are zero because Rank (G) = 2m,
and the last 2 by 2 diagonal block of QTNQ above is the 2
by 2 matrix N̂n−2m, which could also be written as vm+1J2, as
in (20).
Lastly, when n = 2m + 1 and the square matrices G ≠ 0, N, K,

and S are each of dimension (2m + 1) by (2m + 1), the matrix
N̂n−2m in (67) is now a scalar, which must be zero, since
N̂n−2m is skew-symmetric. Similarly, K̂n−2m and Ŝn−2m in (68)
and (69), respectively, are scalars, which we may denote by
λ2m+1 and σ2m+1, respectively. Then having obtained Q̂ as in
Theorem 5, with �Q equal to the scalar 1 in (73), the real orthog-
onal matrix

Q = Q̂
I2m 0
0 1

[ ]
= Q̂

yields

QTGQ = diag (β1J2, . . . , βmJ2, 0), Q
TNQ = diag (v1J2, . . . , vmJ2, 0)

and

QTKQ= diag (λ1, . . . , λ2m, λ2m+1), QTSQ= diag (σ1, . . . , σ2m, σ2m+1)

as stated in Theorem 2, for this case. The three cases considered
above are summarized in (19)–(22).
This analysis then leads to the following result.
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THEOREM 6. If the commutation conditions (23)–(25) in Theorem
2 are satisfied and n ≤ 2m + 2, then a real orthogonal matrix Q
exists such that the matrices G ≠ 0, N, K, and S can be simulta-
neously quasi-diagonalized. The resulting quasi-diagonal forms
are as in (19)–(22).
When n = 2m or when n = 2m + 1, the orthogonal matrix Q

in Theorem 2 is Q = Q̂; when n = 2m + 2, Q = Q̂diag (I2m, �Q).
The orthogonal matrix Q̂ is as constructed in Theorem 5, and
�Q is the orthogonal matrix, with determinant 1, that simultaneously
diagonalizes the two 2 by 2 matrices K̂n−2m and Ŝn−2m in (68) and
(69).

▪
The converse of this theorem will next be proved.

THEOREM 7. If a real orthogonal matrix Q exists such that the
matrices G ≠ 0, N, K, and S can be simultaneously orthogonally
quasi-diagonalized and n ≤ 2m + 2, then the commutation condi-
tions in (23)–(25) are satisfied.

Proof. If an orthogonal Q exists such that (19)–(22) are true, then
each of the matrices K, S, G2, GN, GKG, GSG can be written as
QXQT , where X is a diagonal matrix, and therefore according to
Remark 4, part 3, the ten commutation conditions in (23)–(25)
are satisfied. For example,

K = Qdiag (λ1, λ2, . . . , λn)QT , S = Qdiag (σ1, σ2, . . . , σn)QT

G2 = QΓQTQΓQT = QΓ2QT = −Qdiag (β21I2, . . . , β
2
mI2, 0n−2m)Q

T

and

GKG = −Qdiag (β21λ2, β
2
1λ1, . . . , β

2
mλ2m, β

2
mλ2m−1, 0n−2m)Q

T

Hence (by Remark 4, part 3), [K, G2] = [S, G2] = [K, GKG]=
[S, GKG] = 0. The other commutation conditions can be proved
similarly. ▪

Theorems 6 and 7 taken together conclude the proof of
Theorem 2, since we have shown that when n ≤ 2m + 2, a real
orthogonal matrix Q exists such that the matrices G ≠ 0, N, K,
and S can be simultaneously quasi-diagonalized if and only if
the commutation conditions (23)–(25) are satisfied. Theorem 4
follows by simply interchanging the roles of G and N in
Theorem 2.
We next consider the more general case when n > 2m + 2 and

thereby prove Theorem 1. Going back to (67)–(69) in the proof
of Theorem 5 and the commutation conditions (23)–(25) stated in
it, we know that the square matrices N̂n−2m, K̂n−2m, and Ŝn−2m
given in (67)–(69) are now each r by r matrices, with
r = n − 2m > 2. Also, N̂n−2m is skew-symmetric, since N is skew-
symmetric; K̂n−2m and Ŝn−2m are symmetric, since K and S are sym-
metric; and, the matrices K̂n−2m and Ŝn−2m commute, since [K, S] =
0 (see (23)).
Consider first the case when N̂n−2m is a nonzero matrix. Refer-

ence [5] proves that the three (n − 2m) by (n − 2m) matrices
N̂n−2m, K̂n−2m, and Ŝn−2m can be simultaneously quasi-diagonalized
by a real orthogonal matrix

⌢

Qn−2m if and only if the following set of
six conditions are satisfied:

[K̂n−2m, N̂n−2mK̂n−2mN̂n−2m] = 0, [K̂n−2m, N̂n−2mŜn−2mN̂n−2m] = 0,

[Ŝn−2m, N̂n−2mK̂n−2mN̂n−2m] = 0, [Ŝn−2m, N̂n−2mŜn−2mN̂n−2m] = 0,

[K̂n−2m, N̂2
n−2m] = 0, and [Ŝn−2m, N̂2

n−2m] = 0 (74)

and explicit methods for constructing the (real and orthogonal)
matrices Q̂ and

⌢

Qn−2m are given in Theorem 5 and Ref. [5],
respectively.
Next, consider the case when N̂n−2m = 0 (i.e., N̂n−2m is a zero

matrix). Now we have only the two symmetric, commuting matri-
ces K̂n−2m and Ŝn−2m in (67)–(69) that need to be simultaneously

diagonalized. It is well-known [8] that a real orthogonal matrix
⌣

Qn−2m exists (and there is a well-established way to obtain
⌣

Qn−2m) such that K̂n−2m and Ŝn−2m can be simultaneously diago-
nalized if and only if [K̂n−2m, Ŝn−2m] = 0. Thus, unlike the previ-
ous case, no additional commutation conditions are required
because the n&s condition for the simultaneous diagonaliza-
tion of K̂n−2m and Ŝn−2m is a condition that is already included
in the conditions given in (23), namely, [K, S] = 0 [8]. It
should, however, be noted that when N̂n−2m = 0 is formally sub-
stituted in the commutation conditions (74), these conditions are
all automatically satisfied, indicating that no further commutation
conditions are required beyond (23)–(25), i.e., those given in
Theorem 5.
Hence, whether or not N̂n−2m is zero, a real orthogonal matrix,

which we denote by Q̃n−2m, exists and can be explicitly constructed,
such that the three matrices N̂n−2m, K̂n−2m, and Ŝn−2m can be simul-
taneously quasi-diagonalized when the six commutation conditions
(74) are satisfied. ▪

This brings us the following lemma.

LEMMA 6

(a) If the commutation conditions (23)–(25) and (74) are satis-
fied, G ≠ 0, and N̂n−2m is a nonzero matrix, then there
exists a real orthogonal matrix Q̃n−2m:=

⌢

Qn−2m such that
the matrices N̂n−2m, K̂n−2m, and Ŝn−2m given in (67)–(69)
can be simultaneously quasi-diagonalized. The explicit pro-
cedure for finding Q̃n−2m is given in Ref. [5].

(b) If the commutation conditions (23)–(25) and (74) are satis-
fied, G ≠ 0, and N̂n−2m = 0 (the zero matrix), a real orthog-
onal matrix Q̃n−2m:=

⌣

Qn−2m exists such that the matrices
K̂n−2m and Ŝn−2m are simultaneously diagonalized. In this
case, the conditions in (74) are automatically satisfied.

Thus, in each case, the matrix Q̃n−2m can be explicitly
constructed.
In brief, for G ≠ 0, when (23)–(25) and (74) are satisfied, there

exists an orthogonal matrix Q̃n−2m that simultaneously quasi-
diagonalizes N̂n−2m, K̂n−2m, and Ŝn−2m (given in (67)–(69)).

We now require the following lemma that will help us provide a
set of commutation conditions equivalent to those given by the set
in (74). The lemma can be viewed as a generalization of Remark 4,
part 3.

LEMMA 7. Let B and C be two n by n matrices. If there
exists a real n by n orthogonal matrix Q such that B =
Qdiag (H1, B̂n−k)QT and C = Qdiag (H2, Ĉn−k)QT where H1 and
H2 are each k by k diagonal matrices, then [B, C] = 0 if and only
if [B̂n−k , Ĉn−k] = 0. Furthermore, if k = n, then [B, C] = 0.

Proof. First, consider an n by n matrix X that satisfies the relation
X = QYQT , where QTQ = I. If Y = 0, the product on the right-hand
side of the equality is zero and hence X = 0. On the other hand, if
X = 0, then Y = 0 since Y = QTXQ. Hence, we observe that X = 0
if and only if Y = 0.
Then, since QTQ = I, we have
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in which the fourth equality arises because H1 and H2 are diagonal
matrices, and therefore they commute with each other. Noting our
previous observation, we then conclude that X = [B, C] = 0 if and
only if Y = 0, which occurs if and only if [B̂n−k , Ĉn−k] = 0.
Hence, [B, C] = 0 if and only if [B̂n−k , Ĉn−k] = 0.
Furthermore, when k = n, the blocks B̂n−k and Ĉn−k in the matri-

ces B and C, respectively, disappear, and Y = 0n, where 0n is the n
by n zero matrix, so that X = [B, C] = 0, something we knew
already from Remark 4, part 3. ▪

LEMMA 8. When the commutation conditions (23)–(25) are satis-
fied, the six commutation conditions in (74) are equivalent to the
following set of commutation conditions:

[K, NKN] = 0, [K, NSN] = 0

[S, NKN] = 0, [S, NSN] = 0 (75)

and
[K, N2] = 0, [S, N2] = 0

Proof. Since the commutation conditions (23)–(25) are satisfied,
by Theorem 5, there exists an orthogonal matrix Q̂ that satisfies
(67)–(69) so that

N = Q̂�NQ̂T , K = Q̂�ΛQ̂T , and S = Q̂�ΣQ̂T

Noting the forms of �N, �Λ, and �Σ in (67)–(69), we then have

K = Q̂�ΛQ̂T
= Q̂diag (λ1, . . . , λ2m, K̂n−2m)Q̂

T

S = Q�ΣQT = Q̂diag (σ1, . . . , σ2m, Ŝn−2m)Q̂
T

NKN = Q̂�N�Λ�NQ̂
T

= −Q̂diag (v21λ2, v
2
1λ1, . . . , v

2
mλ2m, v

2
mλ2m−1, N̂n−2mK̂n−2mN̂n−2m)Q̂

T

NSN = Q̂�N�Σ�NQ̂T
=

− Q̂diag (v21σ2, v
2
1σ1, . . . , v

2
mσ2m, v

2
mσ2m−1, N̂n−2mŜn−2mN̂n−2m)Q̂

T

and

N2 = Q̂�N2
Q̂T = −Q̂diag (v21, v

2
1, . . . , v

2
m, v

2
m, N̂

2
n−2m)Q̂

T

We note that each of the matrices S, K, NKN, NSN, and N2

has the structure Q̂diag (H, Bn−2m)Q̂T , where H is a diagonal 2m
by 2m matrix. Using Lemma 7 with k = 2m in it, we see that
each condition in the set (74) is satisfied if and only if the cor-
responding condition in the set (75) is also satisfied. For
example, the condition [K̂n−2m, N̂n−2mK̂n−2mN̂n−2m] = 0 in the
set (74) is equivalent (by Lemma 7) to the corresponding condi-
tion [K, NKN] = 0 in the set (75). Similarly, the condition
[K̂n−2m, N̂2

n−2m] = 0 in the set (74) is equivalent to the condition
[K, N2] = 0 in (75), and [Ŝn−2m, N̂n−2mŜn−2mN̂n−2m] = 0 is equiv-
alent to [S, NSN] = 0. ▪

Remark 7. The ten commutation conditions (23)–(25) and the six
in (75) comprise the 16 conditions given in (18) in Theorem
1. The conditions involve the 11 matrices G, N, S, K, G2, GN,
GKG, GSG, N2, NKN, and NSN.

Observe that the commutators [G, K], [G, S], [N, K], and [N, S]
are conspicuously absent from this set of 16 conditions.

THEOREM 8. If the commutation conditions given in (23)–(25)
and in the set (75) are satisfied, then there exists a real orthogonal
matrix Q such that the n by n matrices G ≠ 0, N, K, and S can be
simultaneously quasi-diagonalized and have the form

Γ = QTGQ = diag (β1J2, . . . , βmJ2, 0n−2m) (76)

N = QTNQ = diag (ν1J2, . . . , νmJ2, . . . , vn/2J2) for n even

= diag (ν1J2, . . . , νmJ2, . . . , v(n−1)/2J(n−1)/2, 0) for n odd

(77)

Λ = QTKQ = diag (λ1, λ2, . . . , λn) (78)

and

Σ = QTSQ = diag (σ1, σ2, . . . , σn) (79)

where βj > 0, j = 1, . . . , m, and all the λ′js, v
′
js, and σ′js are real

numbers.

Proof. If the ten commutation conditions (23)–(25) are satisfied,
we have shown in Theorem 5 that a real orthogonal n by n matrix
Q̂ exists such that Γ = Q̂TGQ̂, �N = Q̂TNQ̂, �Λ = Q̂TKQ̂, and �Σ =
Q̂TSQ̂ (see (67)–(69)); furthermore, the matrix Q̂ is explicitly
obtained.
By Lemma 8, the set of the commutation conditions (75) is

equivalent to the set (74). Using Lemma 6, we then find that if
the conditions in (75) are additionally satisfied, then the
matrices N̂n−2m, K̂n−2m, and Ŝn−2m can be simultaneously quasi-
diagonalized by a real orthogonal matrix Q̃n−2m, which can be
explicitly constructed. Hence, the real orthogonal matrix Q =
Q̂diag (I2m, Q̃n−2m) simultaneously quasi-diagonalizes the matrices
G ≠ 0, N, K, and S. The quasi-diagonal forms are given in
(76)–(79). ▪

We now prove the converse of Theorem 8.

THEOREM 9. If a real orthogonal matrix Q exists such that it
simultaneously quasi-diagonalizes G, N, K, and S as in
(76)–(79), then the commutation conditions given in (23)–(25)
and in (75) are satisfied.

Proof. If the relations (76)–(79) are satisfied, then with QTQ = In

G = QΓQT , N = QNQT , QTSQ = Σ, and QTKQ = Λ

Hence,

S = Qdiag (σ1, . . . , σn)QT , K = Qdiag (λ1, . . . , λn)QT ,

G2 = QΓQTQΓQT = QΓ2QT = −Qdiag (β2
1
I2, . . . , β2m I2, 0n−2m)Q

T ,

GN = −Qdiag (β1v1I2 . . . , βmvmI2, 0n−2m)Q
T = NG,

GKG = −Qdiag (β21λ2, β
2
1λ1, . . . , β

2
mλ2m, β

2
mλ2m−1, 0n−2m)Q

T ,

GSG = −Qdiag (β21σ2, β
2
1σ1, . . . , β

2
mσ2m, β

2
mσ2m−1, 0n−2m)Q

T

N2 = −Qdiag (ν21I2, . . . , ν
2
n/2I2)Q

T for n even

= −Qdiag (ν21I2, . . . , ν
2
(n−1)/2I2, 0)Q

T for n odd (80)

NKN = −Qdiag (v21λ2, v
2
1λ1, . . . , v

2
n/2λn)Q

T for n even

= −Qdiag (v21λ2, v
2
1λ1, . . . , v

2
(n−1)/2λn, 0)Q

T for n odd

and

NSN = −Qdiag (v21σ2, v
2
1σ1, . . . , v

2
n/2σn)Q

T for n even

= −Qdiag (v21σ2, v
2
1σ1, . . . , v

2
(n−1)/2σn, 0)Q

T for n odd

All nine of the matrices in (80) are of the form QXQT , where
X is a diagonal matrix, and the product GN = NG. By Lemma
7, all the 16 commutators in (23)–(25) and in (75) are therefore
zero. ▪
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From Theorems 8 and 9, our central result in Theorem 1 is
proved. Theorem 3 follows by simply interchanging the roles of
G and N in it. Having proved the four central theorems, we
obtain the following auxiliary results by successively setting
K = 0, S = 0, and N = 0 in them.

THEOREM 10. There exists a real orthogonal matrix Q such that
the n by n matrices G ≠ 0, S, and N can be simultaneously quasi-
diagonalized and have the form

QTGQ = Γ = diag (β1J2, . . . , βmJ2, 0n−2m)

Σ = QTSQ = diag (σ1, σ2, . . . , σn)

and

QTNQ = N = diag (ν1J2, . . . , νn/2J2) for n even

= diag (ν1J2, . . . , ν(n−1)/2J2, 0) for n odd

where βj > 0, j = 1, . . . , m, and all the v′js and σ
′
js are real numbers,

if and only if the following set of conditions are satisfied:

[G, N] = 0, [S, GN] = 0, [S, GSG] = 0, [S, NSN] = 0

[S, G2] = 0, [S, N2] = 0
(81)

Proof. Set K = 0 in Theorem 1. The n&s conditions in (18) reduce
to (81). ▪

THEOREM 11. There exists a real orthogonal matrix Q such that
the n by n matrices G ≠ 0, K, and N can be simultaneously quasi-
diagonalized and have the form

QTKQ = Λ = diag (λ1, . . . , λn)

QTGQ = Γ = diag (β1J2, . . . , βmJ2, 0n−2m)

and

QTNQ = N = diag (ν1J2, . . . , νn/2J2) for n even

= diag (ν1J2, . . . , ν(n−1)/2J2, 0) for n odd

where βj > 0, j = 1, . . . , m, and all the v′js and λ′js are real numbers
if and only if the following set of conditions are satisfied:

[G, N] = 0, [K, GN] = 0, [K, GKG] = 0, [K, NKN] = 0,

[K, G2] = 0, [K, N2] = 0 (82)

Proof. We set the matrix S = 0 in Theorem 1. The n&s conditions
in (18) yield (82) for the simultaneous orthogonal quasi-
diagonalization of the three matrices G, K, and N. ▪

Remark 8. Theorem 11, which was obtained earlier in Ref. [6], is
seen to follow directly from Theorem 1. The n&s conditions for the
simultaneous orthogonal quasi-diagonalization of the matrices G,
K, and N ≠ 0 (i.e., with 0 < Rank (N) = 2m ≤ n) can be obtained
using Theorem 3, and setting S = 0 in it. The quasi-diagonal
forms for the three matrices are given in (26), (28), and (27); the
n&s conditions can be obtained from (18). One could also obtain
these n&s conditions from (82) by simply exchanging in it G
with N, which leaves the set of commutation conditions in (82)
unchanged.

THEOREM 12. There exists a real orthogonal matrix Q such that
the n by n matrices G, K, and S, with 0 < Rank(G) = 2m ≤ n, can

be simultaneously quasi-diagonalized and have the form

Γ = QTGQ = diag (β1J2, . . . , βmJ2, 0n−2m) (83)

Λ = QTKQ = diag (λ1, λ2, . . . , λn) (84)

and

Σ = QTSQ = diag (σ1, σ2, . . . , σn) (85)

where βj > 0, j = 1, . . . , m, and all the λ′js and σ
′
js are real numbers

if and only if the following set of commutation conditions

[K, S] = 0, [K, GKG] = 0, [K, GSG] = 0, [S, GKG] = 0,

[S, GSG] = 0, [K, G2] = 0, [S, G2] = 0

(86)

are satisfied.

Proof. Set N = 0 in Theorem 1. We find from (15) that N = 0, and
the set of commutation conditions in (18) reduce to (86). ▪

Observe that Theorem 12 is obtained trivially by setting N = 0 in
Theorem 1. The theorem shows that any three n by nmatrices G, K,
and S (where G is skew-symmetric, while K and S are both sym-
metric), with 0 < Rank (G) = 2m ≤ n, can be simultaneously
orthogonally quasi-diagonalized to yield the forms given in
(83)–(85) if and only if the commutation conditions (86) are satis-
fied. This leads to the following result.

THEOREM 13. There exists a real orthogonal matrix Q such that
the n by n matrices N, K, and S, with 0 < Rank (N) = 2m ≤ n,
can be simultaneously quasi-diagonalized and have the form

N = QTNQ = diag (v1J2, . . . , vmJ2, 0n−2m) (87)

Λ = QTKQ = diag (λ1, λ2, . . . , λn) (88)

and

Σ = QTSQ = diag (σ1, σ2, . . . , σn) (89)

where vj > 0, j = 1, . . . , m, and all the λ′js and σ′js are real numbers
if and only if the following set of commutation conditions

[K, S] = 0, [K, NKN] = 0, [K, NSN] = 0, [S, NKN] = 0,

[S, NSN] = 0, [K, N2] = 0, [S, N2] = 0

(90)

are satisfied.

Proof. In Theorem 12, exchange the roles of the skew-symmetric
matrix G and the skew-symmetric matrix N. This could more
directly have been obtained by setting G = 0 in Theorem 3. ▪

Remark 9. Theorems 12 and 13 give the n&s conditions for the
simultaneous orthogonal quasi-diagonalization of the matrices
S, G ≠ 0, K and the simultaneous orthogonal quasi-diagonalization
of the matrices S, K, N ≠ 0, respectively. They trivially follow from
Theorems 1 and 3.

Remark 10. Theorem 1 gives the n&s conditions in (18) for
the simultaneous orthogonal quasi-diagonalization of the matrix
quadruplet {S, G, K, N}, under the proviso that 0 < Rank (G)=
2m ≤ n. Under this proviso, Theorems 10, 11, and 12 give the
n&s conditions for the simultaneous orthogonal quasi-
diagonalization of the three matrix triplets {S, G, N}, {G, N, K},
and {S, G, K}. These n&s conditions and the corresponding quasi-
diagonal forms are obtained directly from Theorem 1 by simply
setting K = 0, S = 0, and N = 0, respectively. To obtain the n&s
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conditions for {S, N, K}, N ≠ 0, and the corresponding quasi-
diagonal forms, the n&s conditions (and the quasi-diagonal
forms) for the simultaneous orthogonal quasi-diagonalization of
the triplet {S, G, K} with G ≠ 0 (Theorem 12) can be used
with an exchange of the symbols G and N (Theorem 13). As
mentioned before, an alternative and simpler way for handling
the matrix triplet {S, N, K}, N ≠ 0, is to use Theorem 3, and
set G = 0 in it.

Remark 11. One can also obtain from Theorem 1 the n&s condi-
tions for the simultaneous orthogonal quasi-diagonalization of the
doublet {G, K}, under the proviso that G ≠ 0, by simply setting
S = 0 and N = 0 in (18) (and in the quasi-diagonal forms), yielding
the conditions [K, G2] = 0 and [K, GKG] = 0, which were obtained
earlier in Ref. [3]. Replacing K by S, the n&s conditions for the
simultaneous orthogonal quasi-diagonalization of {G, S} are
[S, G2] = 0 and [S, GSG] = 0. Also, replacing G by N in the first
sentence of this remark, under the proviso that N ≠ 0, the n&s con-
ditions for the simultaneous orthogonal quasi-diagonalization of
{N, K} are [K, N2] = 0 and [K, NKN] = 0. The latter two relations
can also be obtained by formally setting G = 0 and S = 0 in (18).
Likewise, the n&s conditions for the quasi-diagonalization of the
doublet {S, N}, N ≠ 0, are simply obtained by formally setting G =
0 and K = 0 in (18); they are [S, N2] = 0 and [S, NSN] = 0. The
n&s condition for the simultaneous quasi-diagonalization of
{G, N} is obtained from (18) by setting K = 0 and S = 0; it is
[G, N] = 0, as found earlier in Ref. [6]. Lastly, the n&s condition
for the two matrices K and S, which are both symmetric, to be
simultaneously diagonalized is well-known [8] and is [K, S] = 0
which can again be obtained by formally setting G = 0 and N = 0
in (18).

3 Uncoupling of Linear MDOF Structural
and Mechanical Systems
In this section, we use the theorems developed to uncouple the

system described in (12), which we repeat here for convenience

ẍ + (S + G)︸��︷︷��︸
D

ẋ + (K + N)︸���︷︷���︸
R

x = f (t) (12)

and present our first result.

Result 1. The necessary and sufficient (n&s) conditions for a real
orthogonal matrix Q to exist such that the MDOF dynamical
system described by (12) with 0 < Rank (G) = 2m ≤ n (G ≠ 0)
can be uncoupled, through quasi-diagonalization, by using the
orthogonal coordinate transformation x = Qp into independent sub-
systems that have at most two degrees-of-freedom are ((23)–(25)
and (75)):

[G, N]= 0, [K, S]= 0, [K, GN]= 0, [S, GN] = 0,
[K, GKG] = 0, [K, GSG] = 0, [K, NKN] = 0, [K, NSN]= 0,
[S, GKG]= 0, [S, GSG] = 0, [S, NKN]= 0, [S, NSN]= 0,
[K, G2] = 0, [S, G2]= 0, [K, N2]= 0, [S, N2]= 0

(91)

The equation describing the uncoupled system in terms of the
principal coordinate p is

p̈ + (Σ + Γ) ṗ + (Λ + N)p = QTf (t) (92)

where

Σ = QTSQ = diag (σ1, σ2, . . . , σn)

Γ = QTGQ = diag (β1J2, . . . , βmJ2, 0n−2m)

Λ = QTKQ = diag (λ1, λ2, . . . , λn)

(93)

and

N = QTNQ = diag (ν1J2, . . . , νmJ2, . . . , vn/2J2) for n even

= diag (ν1J2, . . . , νmJ2, . . . , v(n−1)/2J(n−1)/2, 0) for n odd

with βj > 0, j = 1, . . . , m, and all the v′js, λ′js, and σ′js are real
numbers.
Each uncoupled, independent, real two-degree-of-freedom sub-

system in (92) has the same specific (matrix) structure, namely,

ä
b̈

[ ]
+

σ β
−β σ̃

[ ]
ȧ
ḃ

[ ]
+

λ v
−v λ̃

[ ]
a
b

[ ]
=

g1(t)
g2(t)

[ ]
(94)

Both the real coefficient matrices on the left-hand side of the
equation in (94) have the same structure; in each of them, the off-
diagonal elements have the same absolute value but opposite
signs. On the right-hand side, g1(t) and g2(t) are real functions of
time, t.

Proof. We use the coordinate change x = Qp in (12) where Q is a
real orthogonal matrix, and premultiply (12) by QT to yield

p̈ + QT (S + G)Q ṗ + QT (K + N)Qp = QTf (t) (95)

in which we shall refer to p as the principal coordinate. Since
the necessary and sufficient commutation conditions (91) are sat-
isfied, Theorem 1 states that a real orthogonal matrix Q exists
such that the matrices S, G, K, and N, with 0 < Rank (G)=
2m ≤ n, can be simultaneously quasi-diagonalized so that (95)
can be rewritten as

p̈ + (Σ + Γ) ṗ + (Λ + N)p = QTf (t) (96)

where Σ, Γ, Λ, and N are as in (14)–(17).
As seen from the right-hand sides of (93), the system

uncouples into independent subsystems each with at most two
degrees-of-freedom in the principal coordinate p, thereby
expressing (95) in its canonical (simplest and maximally uncou-
pled) form. The structure of the matrices of each
two-degree-of-freedom subsystem shown in (94) follows directly
from (14) to (17). ▪

Remark 12. When the n&s conditions in (91) are satisfied, every
real uncoupled two-degree-of-freedom subsystem generated
through simultaneous orthogonal quasi-diagonalization has the
structure shown in (94). As mentioned before, the off-diagonal
terms in each of the two coefficient matrices on the left-hand
side of this equation have the same absolute value, but opposite
signs.
Thus, Results 1 and 3 may be thought of as providing the n&s

conditions for the uncoupling of an MDOF system into at most
two-degree-of-freedom subsystems where each two-degree-of-
freedom subsystem has the specific structure given in (94).
More specifically, the elements of the two real matrices in (94)

can be identified as follows: σ and σ̃ are (real) eigenvalues of S;
±iβ are (pure imaginary) eigenvalues of G; λ and λ̃ are (real) eigen-
values of K; ±iv are (pure imaginary) eigenvalues of N (some of
these elements can be zero).
The 16 n&s conditions in (91) are indeed a large number of con-

ditions, but as we will show in the next subsection, the number of
commutation conditions can be greatly reduced in naturally occur-
ring systems and in commonly found aerospace, civil, and mechan-
ical engineering systems.

Example 1. Consider the six-degree-of-freedom system described
by (12) with the matrices
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S =

0.4 −0.1 0 0 0 0

−0.1 0.4 −0.1 0 0 0

0 −0.1 0.5 −0.2 0 0

0 0 −0.2 0.6 −0.2 0

0 0 0 −0.2 0.55 −0.15
0 0 0 0 −0.15 0.4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, K =

2 −1 0 0 0 0

−1 2 −1 0 0 0

0 −1 3 −2 0 0

0 0 −2 4 −2 0

0 0 0 −2 3.5 −1.5
0 0 0 0 −1.5 2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

G =

0 −0.1427 −0.4258 −0.5549 −0.6217 −0.5776
0.1427 0 −0.4433 −0.6699 −0.8109 −0.7904
0.4258 0.4433 0 −0.2751 −0.4878 −0.5637
0.5549 0.6699 0.2751 0 −0.2341 −0.3614
0.6217 0.8109 0.4878 0.2341 0 −0.1613
0.5776 0.7904 0.5637 0.3614 0.1613 0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

N =

0 0.0088 −0.0591 0.1186 −0.1021 0.0374

−0.0088 0 0.0941 −0.2412 0.2430 −0.0992
0.0591 −0.0941 0 0.3538 −0.5432 0.2681

−0.1186 0.2412 −0.3538 0 0.4789 −0.3143
0.1021 −0.2430 0.5432 −0.4789 0 0.1197

−0.0374 0.0992 −0.2681 0.3143 −0.1197 0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

f (t) = f1(t) f2(t) 0 0 0 0
[ ]T

For brevity, numerical values are shown up to 4 decimal places. A short computation shows that the commutators in (91) are all zero, and
therefore, by Result 1, there exists an orthogonal matrix Q that simultaneously quasi-diagonalizes K, S, G, and N. The ranks of the 6 by 6
matrices G and N are both 2, and their spectra are { ± 2i, 0, 0, 0, 0} and { ± i, 0, 0, 0, 0}, respectively. We note that n = 6 and m = 1, so
that n > 2m + 2.
Upon using the coordinate transformation x = Qp, with the orthogonal matrix

Q =

0.2004 0.5170 −0.5175 −0.6287 0.1704 −0.0200
0.3679 0.5930 −0.1183 0.6025 −0.3568 0.0933
0.4750 0.1632 0.4905 0.0514 0.5768 −0.4146
0.4896 −0.1213 0.3604 −0.3002 −0.1371 0.7119
0.4640 −0.3541 −0.0888 −0.2078 −0.5703 −0.5320
0.3791 −0.4630 −0.5830 0.3252 0.4086 0.1713

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

(92) gives the following four independent subsystems in terms of the principal six-vector p as

p̈1
p̈2

[ ]
+

0.2164 2

−2 0.2853

[ ]
ṗ1
ṗ2

[ ]
+

0.1641 0

0 0.8530

[ ]
p1
p2

[ ]
=

0.2004 0.3679

0.5170 0.5930

[ ]
f1(t)

f2(t)

[ ]
p̈3 + 0.3771 ṗ3 + 1.7714p3 = −0.5175f1(t) − 0.1183f2(t)

p̈4 + 0.4958 ṗ4 + 2.9583p4 = −0.6287f1(t) + 0.6025f2(t) Far1da%
and

p̈5
p̈6

[ ]
+

0.6094 0
0 0.8659

[ ]
ṗ5
ṗ6

[ ]
+

4.0939 1
−1 6.6593

[ ]
p5
p6

[ ]
=

0.1704 −0.3568
−0.0200 0.0933

[ ]
f1(t)
f2(t)

[ ]

Thus, the MDOF system described by (12) uncouples into two
subsystems each with two degrees-of-freedom and two subsystems
each with a single-degree-of-freedom. Note that the form of each
two-degree-of-freedom subsystem is as in (94).

Result 2. The set of commutation conditions (91) gives the neces-
sary and sufficient (n&s) conditions for a real orthogonal matrix Q
to exist such that the MDOF dynamical system described by (12),
with 0 < Rank (N) = 2m ≤ n (N ≠ 0), uncouples, through quasi-
diagonalization, into independent subsystems that have at most
two degrees-of-freedom using the orthogonal coordinate transfor-
mation x = Qp. The equation describing the uncoupled system in

terms of the principal coordinate p is

p̈ + (Σ + Γ) ṗ + (Λ + N)p = QTf (t) (97)

where

Σ = QTSQ = diag (σ1, σ2, . . . , σn)

Γ = QTGQ = diag (β1J2, . . . , βmJ2, . . . , βn/2J2) for n even

= diag (β1J2, . . . , βmJ2, . . . , β(n−1)/2J(n−1)/2, 0) for n odd

Λ = QTKQ = diag (λ1, λ2, . . . , λn) (98)
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and

N = QTNQ = diag (v1J2, . . . , vmJ2, 0n−2m)

with vj > 0, j = 1, . . . , m, and all the β′js, λ′js, and σ′js are real
numbers.
Each uncoupled, independent, real two-degree-of-freedom sub-

system in (97) has the specific matrix structure given in (94).

Proof. By Theorem 3, the n&s conditions for the existence of an
orthogonal matrix Q, which simultaneously quasi-diagonalizes the
matrix quadruplet {S, G, K, N}, are satisfied. Using the transforma-
tion x = Qp as in the previous proof, (12) transforms to (97), and the
quasi-diagonal forms engendered in (98) come directly from
Theorem 3. From (26) to (29), each uncoupled, independent, real
two-degree-of-freedom subsystem in (97) has the specific matrix
structure given in (94). ▪

Remark 13. In the special case when each matrix in the quadruplet
{S, G, K, N} is a 2 by 2 matrix, the condition [K, S] = 0 implies
that the other 15 commutation conditions in (91) are also satisfied.
Direct computations prove this easily.

Remark 14. Since simultaneous orthogonal quasi-diagonalization
always generates uncoupled two-degree-of-freedom subsystems
each having the same specific matrix structure shown in (94) (see
Remark 12 also), this poses a restriction on the quasi-
diagonalization approach for uncoupling general MDOF systems.
One can envision MDOF systems, which when uncoupled, have
two-degree-of-freedom subsystems that do not conform to this
restricted structure in (94). In such cases, the commutation condi-
tions in (91) continue to be sufficient conditions for uncoupling
MDOF systems, though, not necessary.

To illustrate Remark 14, we consider the following simple
example.

Example 2. Consider a simple MDOF system composed of a
three-degree-of-freedom system described by the equation

ẍ1
ẍ2
ẍ3

⎡
⎣

⎤
⎦ +

2 3 0
3 2 0
0 0 1

⎡
⎣

⎤
⎦

︸������︷︷������︸
D

ẋ1
ẋ2
ẋ3

⎡
⎣

⎤
⎦ +

5 −3 0
−4 7 0
0 0 3

⎡
⎣

⎤
⎦

︸���������︷︷���������︸
R

x1
x2
x3

⎡
⎣

⎤
⎦ = 0 (99)

As seen from (99), this system decouples into two independent
subsystems: the two-degree-of-freedom subsystem

ẍ1
ẍ2

[ ]
+

2 3
3 2

[ ]
ẋ1
ẋ2

[ ]
+

5 −3
−4 7

[ ]
x1
x2

[ ]
= 0 (100)

and the single-degree-of-freedom subsystem

ẍ3 + ẋ + 3x = 0 (101)

A simple computation of the symmetric parts of D and R in (99)
shows that [K, S] ≠ 0. Therefore, the n&s conditions in (91) for
simultaneous orthogonal quasi-diagonalization are not satisfied.
Hence, system (99) cannot be uncoupled through quasi-
diagonalization; and yet, this MDOF system is clearly uncoupled
into the two independent subsystems shown in (100) and (101).
Note that the structure of the matrices of the two-degree-of-freedom
subsystem in (100) is such that this subsystem cannot be reduced to
the specific form (94) by an orthogonal transformation.

COROLLARY 1. If the four matrices S, G, K, and N commute pair-
wise, the MDOF dynamical system described by (12) can be

uncoupled using a real orthogonal coordinate transformation x =
Qp into independent subsystems that have at most two
degrees-of-freedom.

Proof. If the four matrices commute pairwise, we have a total of six
commutation conditions. Using them, the n&s commutation condi-
tions in (91) for quasi-diagonalization are all satisfied. By Results 1
and 2, a real orthogonal matrix Q exists so that (12) transforms,
using the real coordinate transformation x = Qp, to the form given
in (97). The quasi-diagonal matrices are given in (93) when
G ≠ 0, and in (98) when N ≠ 0. If G ≠ 0 and N ≠ 0, either (93)
or (98) can be used. ▪

Remark 15. In general, though the 16 n&s conditions given in (91)
impose a larger number of conditions on the four matrices S, G, K,
and N than the six pairwise commutation conditions in Corollary 1,
these six conditions impose more stringent restrictions on the nature
of the four matrices so that they can be simultaneously orthogonally
quasi-diagonalized, leading to uncoupled independent subsystems
of the linear MDOF system. For example, when G ≠ 0 and the pair-
wise commutation conditions in the Corollary 1 are satisfied, there
exists a real orthogonal matrix Q such that (12) transforms to (92).
From the relations in (93), we find that G = QΓQT and K = QΛQT

where the matrices Γ and Λ are quasi-diagonal and diagonal. The
pairwise commutation condition [G, K] = 0 in Corollary 1 (see
Remark 7, for comparison), requires that Q(ΓΛ − ΛΓ)QT = 0,
implying ΓΛ = ΛΓ. Noting the quasi-diagonal structure of Γ, for
this to be true the matrix Λ, which contains the eigenvalues of K
along its diagonal, must have the structure

Λ = diag (λ1, λ1, λ2, λ2, . . . , λm, λm, λ2m+1, . . . , λn)

since all βj > 0. This restricts the matrix K to having m pairs of mul-
tiple eigenvalues to be eligible for simultaneous quasi-
diagonalization, leading to uncoupled subsystems. MDOF
systems with such a restricted spectrum are rarely found in nature
and engineered systems. Furthermore, the pairwise commutation
condition [N, K] = 0, also demanded by Corollary 1, could place
further restrictions on the last n − 2m eigenvalues of Λ, making
such a matrix K even more unlikely to arise in real-world MDOF
systems. Likewise, the commutation conditions [G, S] = [N, S] =
0 restrict the spectrum of S in a similar manner. Thus, though
only six pairwise commutation conditions in Corollary 1 need to
be satisfied, from an applications standpoint they do not provide a
useful set of conditions for uncoupling real-world MDOF
systems, except perhaps in rare, very special structural and mechan-
ical systems. Example 4 in the next section illustrates this remark.

3.1 Uncoupling Various Categories of Linear MDOF
Structural and Mechanical Systems: A Unified Approach.
The n&s conditions given in (91) permit the simultaneous orthogo-
nal quasi-diagonalization of the four matrices S, G, K, and N, two of
which are symmetric and two of which are skew-symmetric. They
allow us to obtain the n&s conditions, very simply, for all of the dif-
ferent categories of linear MDOF systems described in Sec. 1. One
only needs to recall that the zero matrix commutes with all matrices.
We refer to the matrix K as the “potential” matrix, a system that has
N = 0 in (12) as a “potential system,” and the matrix R = K + N as
the “stiffness” matrix.

Result 3. For each of the different categories of linear MDOF
systems described by (12) the n&s conditions for an orthogonal
matrix Q to exist, so that they can be maximally uncoupled
through simultaneous quasi-diagonalization by the real coordinate
transformation x = Qp can be obtained using the set of n&s condi-
tions given in (91). This is summarized in the table below for some
systems commonly encountered in nature and in engineered
systems.
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MDOF system
System description in

(12)
Necessary and sufficient conditions

for maximal uncoupling
Equation of motion

Undamped potential system S= 0, G= 0, N= 0 p̈ + Λp = QTf (t))

Potential system with the symmetric damping
matrix system

G= 0, N= 0 [K, S]= 0 p̈ + Σ ṗ + Λp = QTf (t)

Gyroscopic purely circulatory system S= 0, K= 0 [G, N ]= 0 p̈ + Γ ṗ + Np = QT f (t)

Gyroscopic potential system S= 0, N= 0 [K, G2]= 0, [K, KGK]= 0 p̈ + Γ ṗ + Λp = QT f (t)

Undamped system with arbitrary stiffness
matrix

S= 0, G= 0 [K, N2]= 0, [K, NKN]= 0 p̈ + (Λ + N)p = QTf (t)

Gyroscopic nonconservative system with an
arbitrary stiffness matrix

S= 0 [G, N ]= 0, [K, GN]= 0,
[K, GKG]= 0, [K, NKN]= 0,
[K, G2]= 0, [K, N 2]= 0

p̈ + Γ ṗ + (Λ + N)p = QT f (t)

Damped nonconservative system with an
arbitrary stiffness matrix and an symmetric
damping matrix

G= 0 [K, S]= 0, [K, NKN]= 0,
[K, NSN]= 0, [S, NKN]= 0,
[S, NSN]= 0, [K, N2]= 0, [S, N 2]= 0

p̈ + Σ ṗ + (Λ + N)p = QTf (t)

Nonconservative purely circulatory system
with an arbitrary damping matrix and its dual
damped gyroscopic nonconservative system
with a purely circulatory stiffness matrix and
a symmetric damping matrix

K= 0 [G, N ]= 0, [S, GN]= 0, [S, GSG]= 0,
[S, NSN]= 0, [S, G2]= 0, [S, N 2]= 0

p̈ + (Σ + Γ) ṗ + Np = QTf (t)

Damped potential system with arbitrary
damping matrix and its dual gyroscopic
potential system with a symmetric damping
matrix

N= 0 [K, S]= 0, [K, GKG]= 0,
[K, GSG]= 0, [S, GKG]= 0
[S, GSG]= 0, [K, G2]= 0, [S, G2]= 0

p̈ + (Σ + Γ) ṗ + Λp = QTf (t)

Damped nonconservative system with
arbitrary damping and stiffness matrices

Commutation conditions in the
set (91)

p̈ + (Σ + Γ) ṗ + (Λ + N)p = QTf (t)

Proof. The n&s conditions are obtained by setting the appropriate
matrices to zero in (91). For example, the n&s conditions for a gyro-
scopic potential system with a symmetric damping matrix are obtained
by setting N = 0 in (91), as shown in the second-last row of the table.
The last column gives the maximally uncoupled equation of motion of
the dynamical system in the principal coordinate p. When G ≠ 0 (in
our notation), the quasi-diagonal forms for Σ, Γ, Λ, and N are given
in (93), and when N ≠ 0 (in our notation) they are given in (98).
The former is useful when N = 0, the latter when G = 0. The n&s
commutation conditions for other linear MDOF systems not shown
in this table can be similarly obtained using (91), and the quasi-
diagonal forms for Σ, Γ, Λ, and N from (93) and (98). ▪
From the last column of the table and the quasi-diagonal forms

given in (93) and (98), we see that, in general, linear MDOF
systems of the form given in (12) (maximally) uncouple into inde-
pendent (real) subsystems each of at most two degrees-of-freedom
when the appropriate n&s conditions are satisfied, except for the
category of potential systems and classically damped MDOF
systems (shown in the first two rows), which lead to independent
single-degree-of-freedom subsystems. The n&s conditions, and
the quasi-diagonal forms that lead to the uncoupling of some spe-
cific categories of linear MDOF systems into independent subsys-
tems, have been investigated earlier in Refs. [3–7]. The present
article obtains these results in a straightforward manner, providing
a unified approach for (a) understanding under what conditions
various categories of linear MDOF dynamical can be uncoupled
through simultaneous orthogonal quasi-diagonalization and (b) pro-
viding the explicit nature of the resulting uncoupled subsystems.
The coordinate change that brings about this uncoupling uses
orthogonal matrices, conferring robustness to computational
methods that take advantage of the uncoupled forms obtained
when, of course, the n&s conditions are satisfied.
Remark 16. Since we have four matrices S, G, K, and N, from a
mathematical standpoint, there will be 15 qualitatively different
linear MDOF dynamical systems, excluding the trivial system in
which all four matrices are zero. However, as noted in Sec. 1 and
illustrated in the table, some of these systems may have dual

counterparts. Although their mathematical descriptions are identi-
cal, their physical nature is significantly different, shaped by our
understanding of the distinctive characteristics and origins of the
forces involved. Though they have the same mathematical descrip-
tion, these dual systems would therefore qualify as belonging to dif-
ferent dynamical categories of vibratory systems from a physical
viewpoint, as is the current practice [9].
We next summarize some known results [3–7] in the following

lemma, which will be used in the next result.

LEMMA 9. Consider the four (possible) matrix triplets {S, G, K},
{S, N, K}, {K, G, N}, and {S, G, N}, formed from the matrix qua-
druplet {S, G, K, N}. The following results are known from earlier
studies [5–7].

(a) For a real orthogonal matrix Q to exist so that the matrix
triplet {S, G, K}, which contains two symmetric matrices
and one skew-symmetric matrix, can be simultaneously quasi-
diagonalized, the set of n&s commutation conditions are

[K, S] = [K, G2] = [S, G2] = 0 and

[K, GKG] = [K, GSG] = [S, GKG] = [S, GSG] = 0

(b) Similarly, for a real orthogonal matrix Q to exist so that the
matrix triplet {S, N, K}, which also contains two symmetric
matrices and one skew-symmetric matrix, can be simulta-
neously quasi-diagonalized, the set of n&s commutation con-
ditions are (replace G by N in (a))

[K, S] = [K, N2] = [S, N2] = 0 and

[K, NKN] = [K, NSN] = [S, NKN] = [S, NSN] = 0

(c) For a real orthogonal matrix Q to exist so that the matrix
triplet {K, G, N}, which contains two skew-symmetric matri-
ces and one symmetric matrix, can be simultaneously quasi-
diagonalized, the set of n&s commutation conditions are

[G, N] = [K, G2] = [K, N2] = 0 and

[K, GN] = [K, GKG] = [K, NKN] = 0
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(d) Similarly, for a real orthogonal matrix Q to exist so that the
matrix triplet {S, G, N}, which also contains two skew-
symmetric matrices and one symmetric matrix, can be simul-
taneously quasi-diagonalized, the set of n&s commutation
conditions are (replace K by S in (c))

[G, N] = [S, G2] = [S, N2] = 0 and

[S, GN] = [S, GSG] = [S, NSN] = 0

As mentioned before, these n&s conditions that were obtained
earlier in Refs. [3–7] can be handily obtained from (91) by setting
N = 0, G = 0, S = 0, and K = 0, as we did in the table, to get the
results in parts (a), (b), (c), and (d), respectively. However, these
references also contain several other results germain to real-world
civil, aerospace, and mechanical engineering applications, which
we will use in the following subsection. We note that the n&s con-
ditions given in Ref. [5] have already been used to prove our central
Theorems 1 and 3 (see Lemma 6).

Result 4. A real orthogonal matrixQ exists so that the four matrices
S, G, K, and N can be simultaneously quasi-diagonalized by it, if
and only if the four possible matrix triplets formed from these
four matrices, namely, {S, G, K}, {S, N, K}, {K, G, N},
{S, G, N}, can each be (independently) simultaneously quasi-
diagonalized by real orthogonal matrices.

Proof. Assume first that for a given matrix quadruplet
{S, G, K, N}, the four possible triplets can be individually quasi-
diagonalized by real orthogonal matrices. The n&s conditions for
this to happen for each triplet are specified in Lemma 9. The orthog-
onal matrices that simultaneously quasi-diagonalize each of the four
different matrix triplets are different, since the n&s commutation
conditions for each triplet’s orthogonal quasi-diagonalization are
different, as seen in this lemma. However, it is easy to verify that
the union of the set of n&s conditions given in Lemma 9(a)–(d)
for each of these four triplets to be individually orthogonally quasi-
diagonalized is the set shown in (91).
Hence, if each of four matrix triplets can be individually simulta-

neously quasi-diagonalized, all the n&s conditions for the matrix
quadruplet {S, G, K, N} to be orthogonally quasi-diagonalized
are automatically satisfied. So the simultaneous orthogonal quasi-
diagonalization of the four separate matrix triplets implies the
simultaneous orthogonal quasi-diagonalization of the matrices S,
G, K, and N.
On the other hand, if we assume S, G, K, and N can be simulta-

neously quasi-diagonalized by a real orthogonal matrix Q, this would
imply that the four triplets must be quasi-diagonalizable by Q too. ▪

Remark 17. Result 4 states that simultaneous orthogonal quasi-
diagonalization of each of the four possible matrix triplets
{S, G, K}, {S, N, K}, {K, G, N}, {S, G, N} formed from the qua-
druplet {S, G, K, N} is necessary and sufficient for the simulta-
neous orthogonal quasi-diagonalization of the matrix of S, G, K,
and N. This appears somewhat intuitive.
Similarly, one might then conjecture that the orthogonal quasi-

diagonalization of each of the three possible matrix doublets
{S, G}, {S, K}, and {G, K} formed from the matrix triplet
{S, G, K} would be n&s for the simultaneous quasi-diagonalization
of the matrices S, G, and K. However, this is not true.
This is because the n&s conditions for {S, G} to be quasi-

diagonalized are [S, G2] = [S, GSG] = 0; the n&s condition for

{S, K} to be diagonalized is [S, K] = 0; and the n&s conditions
for {G, K} to be quasi-diagonalized are [K, G2] = [K, GKG] = 0.
The union of these three sets of n&s conditions does not cover
the n&s conditions for the simultaneous orthogonal quasi-
diagonalization of the matrix triplet {S, G, K} given in the
second-last row of the table and Lemma 9(a)—the n&s commutation
conditions [K, GSG] = 0 and [S, GKG] = 0 that are required for the
simultaneous orthogonal quasi-diagonalization of the matrix triplet
{S, G, K} are not in the union of the three sets of n&s conditions
for the three doublets. Likewise, the same conclusion can be drawn
for the other triplets {S, N, K}, {K, G, N}, and {S, G, N}.

We next consider the case when n ≤ 2m + 2.

Result 5. When the dimension n of the n by nmatrices, S,G ≠ 0, K,
and N, is restricted so that n ≤ 2m + 2 (recall,
0 < Rank (G) = 2m ≤ n), then the necessary and sufficient condi-
tions for a real orthogonal matrix Q to exist such that the MDOF
dynamical system described by (12) can be uncoupled through
simultaneous quasi-diagonalization, using the orthogonal coordi-
nate transformation x = Qp, into independent subsystems that
have at most two degrees-of-freedom are

[G, N] = 0, [K, S] = 0,
[K, GKG] = 0, [K, GSG] = 0,
[S, GKG] = 0, [S, GSG] = 0,
[K, GN] = 0, [S, GN] = 0,
[K, G2] = 0, [S, G2] = 0

(102)

The equation describing the uncoupled system in terms of the
principal coordinate p is

p̈ + (Σ + Γ) ṗ + (Λ + N)p = QTf (t) (103)

where

Σ = QTSQ = diag (σ1, σ2, . . . , σn)

Γ = QTGQ = diag (β1J2, . . . , βmJ2) for n = 2m

= diag (β1J2, . . . , βmJ2, 0) for n = 2m + 1

= diag (β1J2, . . . , βmJ2, 0, 0) for n = 2m + 2

Λ = QTKQ = diag (λ1, λ2, . . . , λn) (104)

and

N = QTNQ = diag (ν1J2, . . . , νmJ2) for n = 2m

= diag (ν1J2, . . . , νmJ2, 0) for n = 2m + 1

= diag (ν1J2, . . . , νmJ2, vm+1J2) for n = 2m + 2

where βj > 0, j = 1, . . . , m, and all the v′js, λ
′
js, and σ′js are real

numbers.
Each uncoupled, independent, real two-degree-of-freedom sub-

system in (103) has the specific matrix structure given in (94).

Proof. Using Theorem 2 and following along the same lines as the
proof of Result 1, we arrive at (103) and (104) along with the n&s
conditions in (102). ▪
We illustrate this by the following example.

Example 3. We consider same MDOF system described in
Example 1, except that now we use the 6 by 6 matrix

G =

0 −1.1082 0.2787 0.4000 −0.4926 −1.9147
1.1082 0 −1.1973 −1.1241 −0.6156 −0.0085
−0.2787 1.1973 0 −0.6894 −0.7312 −0.0900
−0.4000 1.1241 0.6894 0 −0.4880 −0.5059
0.4926 0.6156 0.7312 0.4880 0 −0.5363
1.9147 0.0085 0.0900 0.5059 0.5363 0

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦
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The matrices S, K, and N, as well as the force four-vector
f (t), are the same as in Example 1. The spectrum of G is { ±
2i, ± 2.5i, 0, 0} and Rank (G) = 4, so we have m = 2 with
n = 6. Observe that now n = 2m + 2, and Result 5 is therefore
applicable. For simultaneous orthogonal quasi-diagonalization
of the four matrices S, G, K, and N, we therefore require

them to satisfy the commutation conditions in (102), which
are a much smaller set of conditions than required in
Example 1. A short computation shows that these 10 commu-
tation conditions are satisfied, and therefore Result 5 is
applicable.
Upon using the real coordinate transformation x = Qp, with

Q =

0.2004 0.5170 −0.6287 0.5175 0.1704 −0.0200
0.3679 0.5930 0.6025 0.1183 −0.3568 0.0933
0.4750 0.1632 0.0514 −0.4905 0.5768 −0.4146
0.4896 −0.1213 −0.3002 −0.3604 −0.1371 0.7119
0.4640 −0.3541 −0.2078 0.0888 −0.5703 −0.5320
0.3791 −0.4630 0.3252 0.5830 0.4086 0.1713

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

we obtain the following three independent, uncoupled subsystems, each having two degrees-of-freedom:

p̈1
p̈2

[ ]
+

0.2164 2
−2 0.2853

[ ]
ṗ1
ṗ2

[ ]
+

0.1641 0
0 0.8530

[ ]
p1
p2

[ ]
=

0.2004 0.3679
0.5170 0.5930

[ ]
f1(t)
f2(t)

[ ]

p̈3
p̈4

[ ]
+

0.4958 2.5
−2.5 0.3771

[ ]
ṗ3
ṗ4

[ ]
+

2.9583 0
0 1.7714

[ ]
p3
p4

[ ]
=

−0.6287 0.6025
0.5175 0.1183

[ ]
f1(t)
f2(t)

[ ]
and

p̈5
p̈6

[ ]
+

0.6094 0
0 0.8659

[ ]
ṗ5
ṗ6

[ ]
+

4.0939 1
−1 6.6593

[ ]
p5
p6

[ ]
=

0.1704 −0.3568
−0.0200 0.0933

[ ]
f1(t)
f2(t)

[ ]

We next go back to Corollary 1 which considers the pairwise commutation of the four matrices S, G, K, and N for their simultaneous
orthogonal quasi-diagonalization. Remark 15 says that these pairwise commutation conditions, though only 6 in number, restrict these four
matrices much more than the commutation conditions given in (91). That is, there are matrix quadruplets {S, G, K, N} that do not pairwise
commute and therefore do not satisfy the requirements of Corollary 1, yet they can be simultaneously orthogonally quasi-diagonalized,
because they satisfy (91). Loosely speaking, the “number” of quadruplets, {S, G, K, N}, that satisfy (91) is far greater than the
“number” of quadruplets that satisfy pairwise commutation of these four matrices. We illustrate this in the next example using matrices
that satisfy the commutation conditions given in Result 5.

Example 4. Consider the simple example of a four-degree-of-freedom system described by (12) in which

S =

2 0 0 0

0 2 0 0

0 0 2.28 −0.96
0 0 −0.96 1.72

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦, G =

0 0 −2.64 0.48

0 0 0.48 −2.36
2.64 −0.48 0 0

−0.48 2.36 0 0

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦,

K =

2.64 −0.48 0 0

−0.48 2.36 0 0

0 0 2.28 −0.96
0 0 −0.96 1.72

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦, N =

0 0 0.92 −1.44
0 0 −1.44 0.08

−0.92 1.44 0 0

1.44 −0.08 0 0

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

and

f (t) = f1(t) f2(t) f3(t) f4(t)
[ ]T

Again, since Rank(G) = 4 (i.e., m = 2) and n = 4, we have
n = 2m + 2; therefore, Result 5 is applicable. The n&s conditions
for the system described by (12) so it can be transformed to a quasi-
diagonal form are then given in (102). An easy computation shows
that these four matrices satisfy all these conditions. Hence, the
system can be uncoupled into two independent two-degree-
of-freedom subsystems. The orthogonal matrix

Q =
1
5

0 3 4 0
0 4 −3 0
3 0 0 −4
4 0 0 3

⎡
⎢⎢⎣

⎤
⎥⎥⎦

generates the real orthogonal coordinate transformation x = Qp,
which uncouples the system to yield the two independent,

two-degree-of-freedom subsystems, each in the form (94), as

p̈1
p̈2

[ ]
+

1 2
−2 2

[ ]
ṗ1
ṗ2

[ ]
+

1 1
−1 2

[ ]
p1
p2

[ ]

=
0.6f3(t) + 0.8f4(t)
0.6f1(t) + 0.8f2(t)

[ ]

and

p̈3
p̈4

[ ]
+

2 3
−3 3

[ ]
ṗ3
ṗ4

[ ]
+

3 −2
2 3

[ ]
p3
p4

[ ]

=
0.8f1(t) − 0.6f2(t)
−0.8f3(t) + 0.6f4(t)

[ ]

Observe that the pairwise commutation conditions stated in Cor-
ollary 1 demand, among others, that [K, G] = 0, [K, N] = 0,
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[S, G] = 0, and [S, N] = 0. None of these four conditions are met by
the matrices K, G, S, and N in this example. This shows that the ten
n&s conditions in (102) are less restrictive on the four matrices S,G,
K, and N than the six placed on them by the requirement that they
commute pairwise.

Result 6. When the dimension n of the n by n matrices, S, G, K,
and N ≠ 0, is restricted so that n ≤ 2m + 2 (recall,
0 < Rank(N) = 2m ≤ n), then the necessary and sufficient condi-
tions for a real orthogonal matrix Q to exist such that the MDOF
dynamical system described by (12) can be uncoupled, by simulta-
neous quasi-diagonalization using the orthogonal coordinate trans-
formation x = Qp, into independent subsystems that have at most
two degrees-of-freedom are

[G, N] = 0, [K, S] = 0,
[K, NKN] = 0, [K, NSN] = 0,
[S, NKN] = 0, [S, SNS] = 0,
[K, GN] = 0, [S, GN] = 0,
[K, N2] = 0, [S, N2] = 0

(105)

The equation describing the uncoupled system in terms of the
principal coordinate p is

p̈ + (Σ + Γ) ṗ + (Λ + N)p = QTf (t) (106)

where

Σ = QTSQ = diag (σ1, σ2, . . . , σn)

Γ = QTGQ = diag (β1J2, . . . , βmJ2) for n = 2m

= diag (β1J2, . . . , βmJ2, 0) for n = 2m + 1

= diag (β1J2, . . . , βmJ2, βm+1J2) for n = 2m + 2

Λ = QTKQ = diag (λ1, λ2, . . . , λn)

(107)

and

N = QTNQ = diag (v1J2, . . . , vmJ2) for n = 2m

= diag (v1J2, . . . , vmJ2, 0) for n = 2m + 1

= diag (v1J2, . . . , vmJ2, 0, 0) for n = 2m + 2

where vj > 0, j = 1, . . . , m, and all the β′js, λ
′
js, and σ′js are real

numbers.
Each uncoupled, independent, real two-degree-of-freedom sub-

system in (106) has the specific matrix structure given in (94).

Proof. Using Theorem 4 and following along the same lines as the
proof of Result 1, we arrive at (106) and (107) along with the n&s
conditions in (105). ▪

Remark 18. As seen in Results 1 and 2, which are more general,
there are 16 n&s conditions in (91) for a real orthogonal matrix Q
to exist so that the matrix quadruplet {S, G, K, N} can be simulta-
neously quasi-diagonalized. On the other hand, Results 5 and 6 are
restricted to the case when n ≤ 2m + 2 and they each require only
the ten n&s conditions given in (102) and (105), respectively, for
simultaneous orthogonal quasi-diagonalization of the quadruplet.
From this, we deduce that the remaining six n&s conditions not
mentioned in (102) and (105) are automatically satisfied when
n ≤ 2m + 2. That this is indeed so can be seen from the quasi-
diagonal forms given in (104) and (107), respectively, that guaran-
tee this. For example, using (104) in Result 5, we find that
[K, NKN] = Q[QTKQ, QT (NKN)Q]QT = Q[Λ, NΛN]QT = 0. The
last equality follows from Remark 4, part 3, since Λ and NΛN
are diagonal matrices. Similarly, when (102) is true, the commuta-
tion condition [K, N2] = 0 is automatically satisfied.

The reduction in the number of commutation conditions from 16,
in general, to 10 for simultaneous orthogonal quasi-diagonalization

when either the matrix G ≠ 0 and n ≤ 2m + 2, or when N ≠ 0
and n ≤ 2m + 2, includes the commonly found case where either
G and/or N has full rank. However, having to satisfy 10 conditions
is still quite a large number that the four matrices S, G, K, and N
need to satisfy to uncouple (12) maximally using simultaneous
quasi-diagonalization. We now explore how we might reduce this
number by considering more information, which we often possess
in systems that commonly arise in nature and in engineering,
about the matrices S, G, K, and N beyond what we have assumed
till now.

3.2 Reduction in the Number of N&S Commutation
Conditions. We begin by assuming that the spectra of the skew-
symmetric matrices G and N are such that their nonzero eigenvalues
are distinct in each of them. This is a circumstance that commonly
arises in naturally occurring MDOF systems as well as those that are
engineered because having distinct nonzero eigenvalues is generic
for these matrices.

Result 7A. If the nonzero eigenvalues of G are distinct, and the
nonzero eigenvalues of N are distinct, then an orthogonal matrix
Q exists such that the quadruplet {S, G, K, N} can be simulta-
neously quasi-diagonalized into the forms given in (14)–(17) if
and only if the following six commutation conditions are satisfied:

[K, S] = 0, [G, N] = 0, [K, G2] = 0, [K, N2] = 0,

[S, G2] = 0, [S, N2] = 0 (108)

These are the n&s conditions for (12) to be uncoupled by the
orthogonal coordinate change x = Qp to yield the uncoupled form

p̈ + (Σ + Γ) ṗ + (Λ + N)p = QTf (t) (109)

which is composed of at most two degrees-of-freedom independent
subsystems.

Proof. We consider the four matrix triplets {S, G, K}, {S, N, K},
{K, G, N}, and {S, G, N} when G and N each have distinct
nonzero eigenvalues. The n&s conditions for each triplet to be
orthogonally quasi-diagonalized are as follows.

(a) For the triplet {S, G, K}, as shown in Ref. [5], the n&s con-
ditions are:

[S, G2] = 0, [K, G2] = 0, and [K, S] = 0 (110)

(b) For the triplet {S, N, K}, replacing G by N in (110), the n&s
conditions are:

[S, N2] = 0, [K, N2] = 0, and [K, S] = 0 (111)

(c) For the triplet {K, G, N}, as shown in Ref. [6], the n&s con-
ditions are:

[G, N] = 0, [K, G2] = 0, [K, N2] = 0 (112)

(d) For the triplet {S, G, N}, replacing K by S in (112), the n&s
conditions are:

[G, N] = 0, [S, G2] = 0, [S, N2] = 0 (113)

Thus, according to Result 4, for the quadruplet {S, G, K, N} to
be reduced by a real orthogonal transformation Q to a quasi-
diagonal form, the set of n&s conditions are the union of sets in
(110)–(113), as shown in (108).
Using the coordinate transformation x = Qp as before, the form

(109) is obtained from (12), leading to at most two
degrees-of-freedom independent subsystems in the principal coor-
dinate p. ▪
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Result 7B. If the nonzero eigenvalues of G are distinct, and the
nonzero eigenvalues of N are distinct, then an orthogonal matrix
Q exists such that the quadruplet {S, G, K, N} can be simulta-
neously quasi-diagonalized into the forms given in (19)–(22) or
(26)–(29) if and only if the following four commutation conditions
are satisfied:

(a) when G ≠ 0 and n ≤ 2m + 2,

[K, S] = 0, [G, N] = 0, [K, G2] = 0, [S, G2] = 0
(114)

(b) when N ≠ 0 and n ≤ 2m + 2,

[K, S] = 0, [G, N] = 0, [K, N2] = 0, [S, N2] = 0
(115)

These are the n&s conditions for (12) to be uncoupled through
simultaneous quasi-diagonalization by the orthogonal coordinate
change x = Qp to yield the uncoupled form

p̈ + (Σ + Γ) ṗ + (Λ + N)p = QTf (t) (116)

which is composed of at most two degrees-of-freedom independent
subsystems.

Proof. When G ≠ 0 (recall, Rank (G) = 2m), [S, N2] = 0 and
[K, N2] = 0, and when N ≠ 0, [K, G2] = 0 and [S, G2] = 0 (see
Remark 18). Using Result 7A, the result follows. The quasi-
diagonal forms for Σ, Γ, Λ, and N when G ≠ 0 can be obtained
from (104), and when N ≠ 0 from (107). ▪

Often, the eigenvalues of the symmetric matrix K(S) are distinct
in many real-world systems in aerospace, civil, and mechanical
engineering, this, again, being generic for symmetric matrices.
This leads us to the following result.

Result 8A

(1) If all the eigenvalues of K are distinct, then a real orthogonal
matrix Q exists such that S, G ≠ 0, K, and N can be simulta-
neously orthogonally quasi-diagonalized into the forms
given in (14)–(17) if and only if the following six commuta-
tion conditions are satisfied:

[K, S] = 0, [K, GN] = 0, [K, G2] = 0, [K, GKG] = 0,

[K, N2] = 0, [K, NKN] = 0 (117)

(2) If all the eigenvalues of N are distinct, then a real orthogonal
matrix Q exists such that S, G, K, and N ≠ 0 can be simulta-
neously orthogonally quasi-diagonalized into the forms
given in (26)–(29) if and only if the six commutation condi-
tions in (117) are satisfied.

These are the n&s conditions for uncoupling (12), using the real
coordinate transformation x = Qp to obtain the uncoupled forms
made up of independent subsystems each of which has at most
two degrees-of-freedom.

Proof. (1) Since K is symmetric, it can be diagonalized by an
orthogonal matrix Q so that the matrix QTKQ is a diagonal
matrix that has the distinct eigenvalues of K along its diagonal.
The columns of the matrix Q are the n orthonormal eigenvectors
of K, and so Q is unique, except for interchanges among its
columns. We use this idea to show that the n&s conditions for
the quadruplet {S, G, K, N} with G ≠ 0 to be simultaneously
orthogonally quasi-diagonalized are those shown in (117). We
prove the sufficiency first.
Consider the first commutation condition in (117). Since [K, S] =

Q[QTKQ, QTSQ]QT = 0 and QTKQ is a diagonal matrix with dis-
tinct elements along its diagonal, the matrixQTSQmust be diagonal
(Remark 4, part 5). Hence, Q simultaneously diagonalizes K and S.
At present, we leave the ordering of the eigenvectors in Q unspec-
ified, though we note that the simultaneous diagonalization K and S

results from any arbitrary ordering of the n eigenvectors of K con-
tained in the columns of the matrix Q.
Now consider the remaining five commutation conditions in

(117), which are the n&s conditions for the triplet {K, G ≠ 0, N}
to be simultaneously orthogonally quasi-diagonalized when K has
distinct eigenvalues (see Ref. [6], Result 2(a)). We know that the
only matrix that can diagonalize the member K of this triplet is
the matrix Q whose columns are the eigenvectors (now listed in
some particular order) of K. Hence, the matrix Q1 that simulta-
neously orthogonally quasi-diagonalized {K, G ≠ 0, N} must com-
prise of the n eigenvectors of Q in some specific order. And this
matrix Q1 will also simultaneously diagonalize S since this
happens with any arbitrary ordering of the eigenvectors of Q, as
noted before. Hence, Q1 simultaneously orthogonally quasi-
diagonalizes the quadruplet {S, G, K, N}.
The necessity of the conditions in (117) is trivial to show since

the existence of a real orthogonal matrix Q1 that simultaneously
quasi-diagonalized {S, G, K, N} leads to quasi-diagonal forms
shown in (93) from which satisfaction of the commutation relation
follows.
The use of the coordinate transformation x = Qp uncouples (12)

to yield the uncoupled form (109) in the principal coordinate p.

(2) We get the same result by replacing G by N in the argument
above. The set of commutation conditions in (117) remain
unaltered. ▪

Remark 19. As in the proof of Result 7A, we could apply Result 4
and consider the four individual matrix triplets {S, G, K},
{S, N, K}, {K, G, N}, and {S, G, N}, assuming that K has distinct
eigenvalues. The n&s conditions for each triplet to be orthogonally
simultaneously quasi-diagonalized when K has distinct eigenvalues
are as follows.

(a) For the triplet {S, G, K}, as shown in Ref. [5], the n&s con-
ditions are

[K, S] = 0, [K, GKG] = 0, [K, G2] = 0

(b) For the triplet {S, N, K}, replacing G by N above, the n&s
conditions are

[K, S] = 0, [K, NKN] = 0, [K, N2] = 0

(c) For the triplet {K, G, N}, as shown in Ref. [6], the n&s con-
ditions become

[K, GN] = 0, [K, G2] = 0, [K, GKG] = 0,

[K, N2] = 0, [K, NKN] = 0

(d) According to Lemma 9(d), for the triplet {S, G, N}, the n&s
conditions are

[G, N] = 0, [S, GN] = 0, [S, G2] = 0,

[S, GSG] = 0, [S, N2] = 0, [S, NSN] = 0

Taking the union of the four sets of n&s conditions listed in
(a)–(d), we get the following set:

[K, S] = 0, [K, N2] = 0, [K, G2] = 0, [K, GN] = 0,

[S, G2] = 0, [S, N2] = 0, [G, N] = 0, [K, GKG] = 0, [K, NKN] = 0,

[S, GSG] = 0, [S, NSN] = 0, [S, GN] = 0

of n&s commutation conditions for an orthogonal matrix, sayQ1, to
exist such {S, G, K, N} can be simultaneously quasi-diagonalized.
However, these 12 commutation conditions are not all independent
when one considers that the eigenvalues of K are distinct, leaving
just the six independent conditions in Result 8A.

COROLLARY 2. If all the eigenvalues of K are distinct, then a real
orthogonal matrix Q exists such that the quadruplet {S, G, K, N}
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can be simultaneously orthogonally quasi-diagonalized into the
forms given in (14)–(17) or (26)–(29) if and only if:

(a) when the nonzero eigenvalues of G are distinct, the following
five commutation conditions are satisfied:

[K, S] = 0, [K, GN] = 0, [K, G2] = 0, [K, N2] = 0,

[K, NKN] = 0 (118)

(b) when the nonzero eigenvalues of N are distinct, the following
five commutation conditions are satisfied:

[K, S] = 0, [K, GN] = 0, [K, G2] = 0, [K, N2] = 0,

[K, GKG] = 0 (119)

(c) when the nonzero eigenvalues of G are distinct and the
nonzero eigenvalues of N are distinct, the following four
commutation conditions are satisfied:

[K, S] = 0, [K, GN] = 0, [K, G2] = 0, [K, N2] = 0 (120)

These are the n&s conditions for uncoupling (12) to obtain the
uncoupled form (109) that is made up of independent subsystems
each of which has at most two degrees-of-freedom.

Proof. This is because when the nonzero eigenvalues of G are
distinct, [K, G2] = 0 implies [K, GKG] = 0, and when the
nonzero eigenvalues of N are distinct, [K, N2] = 0 implies
[K, NKN] = 0 [3].

Remark 20. If the eigenvalues of K are distinct, the nonzero eigen-
values of G are distinct and [K, G2] = 0, then the condition
[K, GN] = 0 is equivalent to the condition [G, N] = 0. This
follows easily from Ref. [6] (Lemmas 5 and 6). Therefore, in
(118)–(120), the condition [K, GN] = 0 can be replaced by
[G, N] = 0.

Result 8B. If all the eigenvalues of K are distinct, then an orthog-
onal matrix Q exists such that the quadruplet {S, G, K, N} can be
simultaneously orthogonally quasi-diagonalized into the forms
given in (19)–(22) or (26)–(29) if and only if the following four
commutation conditions are satisfied:

(a) when G ≠ 0 and n ≤ 2m + 2,

[K, S] = 0, [K, GN] = 0, [K, G2] = 0, [K, GKG] = 0 (121)

(b) when N ≠ 0 and n ≤ 2m + 2,

[K, S] = 0, [K, GN] = 0, [K, N2] = 0, [K, NKN] = 0 (122)

These are the n&s conditions for uncoupling (12) to obtain the
uncoupled form (109) that is made up of independent subsystems
each of which has at most two degrees-of-freedom.

Proof. We use (117) from Result 8A. Remark 18 shows that when
G ≠ 0, the last two commutation conditions in (117) are automati-
cally satisfied. Similarly, when N ≠ 0, the third and fourth commu-
tation conditions are automatically satisfied. ▪

COROLLARY 3. If all the eigenvalues of K are distinct, then an
orthogonal matrix Q exists such that the quadruplet {S, G, K, N}
can be simultaneously orthogonally quasi-diagonalized into the
forms given in (19)–(22) or (26)–(29) if and only if the following
three commutation conditions are satisfied:

(a) when the nonzero eigenvalues of G are distinct and
n ≤ 2m + 2,

[K, S] = 0, [K, GN] = 0, [K, G2] = 0 and (123)

(b) when the nonzero eigenvalues of N are distinct and
n ≤ 2m + 2,

[K, S] = 0, [K, GN] = 0, [K, N2] = 0 (124)

These are the n&s conditions for uncoupling (12) through simul-
taneous orthogonal quasi-diagonalization to obtain the uncoupled
form (109) that comprises independent subsystems, each with at
most two degrees-of-freedom.

Proof. As in Corollary 2, the reason for the reduction in the number
of commutator conditions from (121) and (122) to (123) and (124),
respectively, is that when the nonzero eigenvalues of G are distinct,
[K, G2] = 0 implies [K, GKG] = 0; similarly, when the nonzero
eigenvalues of N are distinct, [K, N2] = 0 implies [K, NKN] = 0.
The matrices Σ, Γ, Λ, and N for case (a) are given in (104); for

case (b), in (107). ▪

In the sets of conditions (123) and (124), [K, GN] = 0 can be
replaced by [G, N] = 0 (see Remark 20).
The roles of K and S can be interchanged in Results 8A and 8B.

This leads to the following two results.

Result 8C. If all the eigenvalues of S are distinct, then an orthogo-
nal matrix Q exists such that the quadruplet {S, G, K, N} can be
simultaneously orthogonally quasi-diagonalized into the forms
given in (14)–(17) or (26)–(29) if and only if the following six com-
mutation conditions are satisfied:

[K, S] = 0, [S, GN] = 0, [S, G2] = 0, [S, GSG] = 0,

[S, N2] = 0, [S, NSN] = 0
(125)

These are the n&s conditions for uncoupling (12) to obtain the
uncoupled form (109) that is made up of independent subsystems
each of which has at most two degrees-of-freedom.

Result 8D. If all the eigenvalues of S are distinct, then an orthogo-
nal matrix Q exists such that the quadruplet {S, G, K, N} can be
simultaneously orthogonally quasi-diagonalized into the forms
given in (19)–(22) or (26)–(29) if and only if the following four
commutation conditions are satisfied:

(a) when G ≠ 0 (recall, Rank (G) = 2m) and n ≤ 2m + 2,

[K, S] = 0, [S, GN] = 0, [S, G2] = 0, [S, GKG] = 0 (126)

(b) when N ≠ 0 and n ≤ 2m + 2,

[K, S] = 0, [S, GN] = 0, [S, N2] = 0, [S, NSN] = 0 (127)

These are the n&s conditions for uncoupling (12) to obtain the
uncoupled form (109) that is made up of independent subsystems
each of which has at most two degrees-of-freedom.

Remark 21. Likewise, in Corollaries 2 and 3, the roles of K and S
can be interchanged.

LEMMA 10

(a) If and only if [K, G2] = 0 and [K, GKG] = 0, there exists an
orthogonal matrix Q such that the matrices K and G ≠ 0 can
be simultaneously quasi-diagonalized, with

Λ = QTKQ = Λ = diag (λ1, λ2, . . . , λn) (128)

Γ = QTGQ = Γ = diag (β1J2, β2J2, . . . , βmJ2, 0n−2m) (129)

where the λ′is are real numbers, and ± βji, j = 1, 2, . . . , m,
are the nonzero imaginary eigenvalues of G, and further
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(b) when the nonzero eigenvalues of G are distinct, then
[K, G2] = 0 implies [K, GKG] = 0. Hence, [K, G2] =
0 is the sole n&s condition for the simultaneous
orthogonal quasi-diagonalization of K and G by the
orthogonal matrix Q.

(c) When [K, G2] = 0 and [K, GKG] = 0, then

[Kj, G2l+1KuG2r+1] = [Kj, G2l(GKuG)G2r] = 0

for any non-negative integers j, l, u, and r.

Proof. Parts (a) and (b) are proved in Result 3(a) in Ref. [3].
We prove part (c) now. Noting that J22 = −I2, and using (128) and

(129), for any non-negative integers u and l, we have the following
three diagonal matrices:

Λu = QTKuQ = diag (λu1, λ
u
2, . . . , λ

u
n)

Γ2l = QTG2lQ = (−1)ldiag (β2l1 I2, β
2l
2 I2, . . . , β

2l
mI2, 0n−2m)

Γ2l+1 = QTG2l+1Q = (−1)ldiag (β2l+11 J2, β2l+12 J2, . . . , β2l+1m J2, 0n−2m)

The product matrix Ξ:= Γ2l+1ΛuΓ2r+1 is then a diagonal matrix,
where r is a non-negative integer.
Noting that QTQ = I, we, therefore, find that for arbitrary non-

negative integers j, l, u, and r

[Kj, G2l+1KuG2r+1] = Q[QTKjQ, QTG2l+1KuG2r+1Q]QT

= Q[Λj, Γ2l+1ΛuΓ2r+1]QT

= Q[Λj, Ξ]QT = 0

The last equality follows from Remark 4, part 3. ▪

Result 9. Let 0 < Rank (G) = 2m ≤ n (G ≠ 0) and

S =
∑n−1
j=0

ajK
j and N =

∑e
j=0

bjG
2j+1 (130)

where the coefficients a′js and b′js are real constants, and e is a non-
negative integer. Then the two conditions

[K, G2] = 0 and [K, GKG] = 0 (131)

are n&s for an orthogonal matrix Q to exist such that (12) can be
quasi-diagonalized and transformed by a real orthogonal coordi-
nate transformation x = Qp to the uncoupled form (109), with
the matrices Σ, Γ, Λ, and N given in (93), yielding real, indepen-
dent subsystems each of which has at most two degrees-of-
freedom.

Proof. The other 14 necessary and sufficient commutation
conditions in (91) are satisfied automatically when [K, G2] = 0
and [K, GKG] = 0. A detailed proof is given in the Appendix.
Therefore, by Result 1, a real orthogonal matrix Q exists such
that the four matrices S, G, K, and N can be simultaneously
quasi-diagonalized. The coordinate transformation x = Qp in (12)
then gives the uncoupled form (109), which yields (real) indepen-
dent subsystems each of which has at most two degrees-of-
freedom. ▪

COROLLARY 4. Let S =
∑n−1

j=0 ajK
j and N =

∑e
j=0 bjG

2j+1 where
the coefficients a′js and b′js are real constants and e is a non-
negative integer. When the nonzero eigenvalues of G are distinct,
then there exists a real orthogonal matrix Q such that (12) can
be quasi-diagonalized and transformed by a real orthogonal coor-
dinate transformation x = Qp to the uncoupled form (109) if and

only if

[K, G2] = 0

The uncoupled form leads to independent subsystems each
having at most two degrees-of-freedom.

Proof. By Lemma 10(b), when the nonzero eigenvalues of G are
distinct, the commutation condition [K, G2] = 0 implies the condi-
tion [K, GKG] = 0. Result 9 proves the corollary. Note that G
cannot now be a zero matrix. ▪

LEMMA 11. Let [K, S] = 0 and the eigenvalues of K be distinct,
then S can be expressed as S =

∑n−1
j=0 ajK

j [8]. Thus, the orthogonal
matrix Q, which contains all the eigenvectors of K, simultaneously
diagonalizes K and S; as stated before, the order of the eigenvectors
in the columns of Q does not matter.

COROLLARY 5. Let K have distinct eigenvalues, and N =∑e
j=0 bjG

2j+1 where the coefficients b′js are real constants and e
is a non-negative integer. When the nonzero eigenvalues of G are
distinct, then there exists a real orthogonal matrix Q such that
(12) can be quasi-diagonalized and transformed by a real orthog-
onal coordinate transformation x = Qp to the uncoupled form (109)
if and only if

[K, S] = 0, [K, G2] = 0

The uncoupled form leads to independent subsystems each
having at most two degrees-of-freedom.

Proof. Using Corollary 4 and Lemma 11, the result follows. ▪

We next consider the case when G has distinct eigenvalues. Let
us assume that an orthogonal matrix Q exists that simultaneously
quasi-diagonalizes the matrices S, G ≠ 0, K, and N. Hence
QTSQ = Σ, QTGQ = Γ, QTKQ = Λ, and QTNQ = N.
Furthermore, since 0 < Rank (G) = 2m ≤ n, i.e.,G ≠ 0, and since

the eigenvalues of G are distinct

QTGQ = Γ = diag (β1J2, β2J2, . . . , βn/2J2) for n even

= diag (β1J2, β2J2, . . . , β(n−1)/2J2, 0) for n odd

(132)

in which the β′js > 0 are now all distinct. We also have

QTNQ = N = diag (v1J2, v2J2, . . . , vn/2J2) for n even

= diag (v1J2, v2J2, . . . , v(n−1)/2J2, 0) for n odd

(133)

in which the v′js are some (given) real numbers.
Taking e = m − 1 in (130) and considering the relation

N =
∑e
j=0

bjG
2j+1 (134)

in which m = n/2 if n is even, and m = (n − 1)/2 if n is odd, we
get, upon premultiplication of (134) by QT and post-multiplication
by Q,

N = diag (v1J2, v1J2, vmJ2, 0n−2m) =
∑m−1
l=0

blQ
TG2l+1Q =

∑m−1
l=0

blΓ2l+1

=
∑m−1
l=0

(−1)lbldiag (β2l+11 J2, β2l+12 J2, . . . , β2l+1m J2, 0n−2m)

Equating the two quasi-diagonal matrices shown above and
placing the numbers v1, . . . , vm into a column vector, we obtain
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v1

v2

..

.

vm

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦⊗ J2 =

β1 −β31 β51 · · · ( − 1)m−1β2m−11

β2 −β32 β52 · · · ( − 1)m−1β2m−12

..

.

βm −β3m β5m · · · ( − 1)m−1β2m−1m

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

b0

b1

..

.

bm−1

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦⊗ J2

v1

v2

..

.

vm

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

︸��︷︷��︸
c

⊗ J2 =

β1 0 · · · 0

β2 · · · 0

. .
.

0 0 · · · βm

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

︸������������︷︷������������︸
B

1 β21 · · · β2m−21

1 β22 · · · β2m−22

..

.

1 β2m · · · β2m−2m

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

︸��������������︷︷��������������︸
V

( − 1)0 0 . . . 0

0 ( − 1)1 . . . 0

. .
.

0 0 . . . ( − 1)m−1

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

︸����������������������︷︷����������������������︸
E

b0

b1

..

.

bm−1

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

︸����︷︷����︸
b

⊗ J2

where⊗ denotes the Kronecker matrix product. Since J−12 = −J2, upon multiplying the equation on the right by −J2, it reduces to the rela-
tion c = (BVE)b shown above. The matrix B is nonsingular since the β′js are all nonzero; V is the m by m Vandermode matrix and it is
nonsingular since the β′js are distinct, i.e., βj ≠ βk for j ≠ k; and, the diagonal matrix E is an m by m nonsingular matrix since, going
down the diagonal, its elements successively alternate between the values 1 and −1. Hence, the determinant of each of the three matrices
on the right-hand side is nonzero, and therefore the matrix product BVE is invertible. This implies that for any given column vector c, i.e., vj,
j = 1, 2, . . . , m, one can uniquely find the corresponding b′js, j = 0, 1, . . . , (m − 1), that satisfy (134). We then have the following result.

Result 10. Every MDOF system described by (12) that can be simultaneously orthogonally quasi-diagonalized must have its matrix N
expressible in the form (134) if the eigenvalues of G ≠ 0 are distinct.

This then leads to the following result.

Result 11. If all eigenvalues of the n by n matrix K are distinct and the eigenvalues of G are distinct, then there exists a real orthogonal
matrix Q such that (12) can be quasi-diagonalized and transformed by a real orthogonal coordinate transformation x = Qp to the uncoupled
form (109) if and only if

[K, S] = 0, [K, G2] = 0, and N =
∑m−1
j=0

bjG
2j+1 (135)

where m = n/2 if n is even, and (n − 1)/2 if n is odd. The uncoupled form leads to independent subsystems each having at most two
degrees-of-freedom.

Proof. By Corollary 5 and Result 10, the result follows. ▪

Example 5. Consider the MDOF system (12) described by the matrices

S =

0.2546 0.1037 −0.0621 −0.0833
0.1037 0.2586 0.0457 −0.0086

−0.0621 0.0457 0.2374 0.0339

−0.0833 −0.0086 0.0339 0.2494

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦, G =

0 −5 −2 −4
5 0 −5 −2
2 5 0 −4
4 2 4 0

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦,

K =

4 0.5 0 −1
0.5 3 −0.5 −1
0 −0.5 2 1

−1 −1 1 2

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦, N =

0 2.56 2.32 1.40

−2.56 0 2.56 2.32

−2.32 −2.56 0 1.40

−1.40 −2.32 −1.40 0

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

and

f (t) = f1(t) f2(t) 0 0 0 0
[ ]T

The spectrum of K is {0.7753, 2.00, 3.227, 5}, and the purely
imaginary spectrum of G is { ± 4.2426i, ± 8.4853i}. Thus K and
G both have distinct eigenvalues. A quick computation shows
that [K, S] = 0. Furthermore,

KG2 =

−207 −99 45 108
−99 −162 −9 54
45 −9 −99 −72
108 54 −72 −108

⎡
⎢⎢⎣

⎤
⎥⎥⎦ = G2K

The orthogonal matrix Q made up of the eigenvectors of K,
namely,

Q =

−0.6739 0.2142 −0.0000 −0.7071
0.5502 0.1749 −0.6667 −0.4714
−0.4266 −0.5640 −0.6667 0.2357
−0.2473 0.7781 −0.3333 0.4714

⎡
⎢⎢⎣

⎤
⎥⎥⎦

simultaneously quasi-diagonalizes all four matrices S, G, K, and N.
Upon using the real orthogonal coordinate transformation x = Qp,
two independent, two degrees-of-freedom subsystems are obtained.
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They are

p̈1
p̈2

[ ]
+

0.1 4.2426
−4.2426 0.2

[ ]
ṗ1
ṗ2

[ ]
+

3.2247 −0.3394
0.3394 0.7753

[ ]

×
p1
p2

[ ]
=

−0.6793 0.5502
0.2142 0.1749

[ ]
f1(t)
f2(t)

[ ]
and

p̈3
p̈4

[ ]
+

0.3 8.4853
−8.4853 0.4

[ ]
ṗ3
ṗ4

[ ]
+

2 −5.2609
5.2609 5

[ ]

×
p3
p4

[ ]
=

0 −0.6667
−0.7071 −0.4714

[ ]
f1(t)
f2(t)

[ ]
We note that N must have the form given in Result 11. Indeed,

here N = 0.1G + 0.01G3.

Remark 22. The roles of K and S and/or the roles ofG and N can be
interchanged in the above, starting from Result 9.

Remark 23. By using (11), all the results for uncoupling the
MDOF system by simultaneous orthogonal quasi-diagonalization
described by (12) can be translated to the system (1). The real non-

singular coordinate transformation q(t) = M̃
−1/2

Qp(t) will yield the
quasi-diagonalized form (109), resulting in uncoupling (1) into
independent two-degree-of-freedom subsystems. The eigenvalues
of the matrices S, G, K, and N are identical to the eigenvalues of

the matrices M̃
−1
S̃, M̃

−1
G̃, M̃

−1
K̃, and M̃

−1
Ñ, respectively. For

example, the commutation condition [G, N] = 0 becomes

[M−1/2G̃M−1/2, M−1/2ÑM−1/2] = 0 or G̃M̃
−1
Ñ = ÑM̃

−1
G̃, since

M−1/2 is nonsingular. Similarly, [K, S] = 0 becomes

K̃M̃
−1
S̃ = S̃M̃

−1
K̃. As an illustration, Result 11 translates to the

following.

Result 12. If all eigenvalues of the n by n matrix M̃
−1
K̃ are distinct

and all eigenvalues of M̃
−1
G̃ are distinct, then there exists a real

orthogonal matrix Q such that (1) can be quasi-diagonalized and
transformed by a real nonsingular coordinate transformation q(t) =
M̃

−1/2
Qp(t) to the uncoupled form (109) if and only if

K̃M̃
−1
S̃ = S̃M̃

−1
K̃, K̃M̃

−1
G̃M̃

−1
G̃ = G̃M̃

−1
G̃M̃

−1
K̃, and

Ñ =
∑m−1
j=0

bjG̃(M̃
−1
G̃)

2j (136)

wherem = n/2 if n is even, and (n − 1)/2 if n is odd. The uncoupled
form leads to independent subsystems each having at most two
degrees-of-freedom. ▪

4 Conclusions
This article deals with the uncoupling of general linear MDOF

systems with arbitrary stiffness and damping matrices into indepen-
dent subsystems that have at most two degrees-of-freedom using
simultaneous orthogonal quasi-diagonalization and real linear non-
singular coordinate transformations. The mass matrix of the MDOF
system is assumed to be positive definite. The main results can be
summarized as follows.

(1) A fundamental result in linear algebra that gives the neces-
sary and sufficient (n&s) conditions for two symmetric n
by n matrices (S and K) and two skew-symmetric n by n
matrices (G and N) to be simultaneously quasi-diagonalized
by a real orthogonal matrix is developed. It is shown that
there are a total of 16 commutation conditions that are n&s
for their simultaneous orthogonal quasi-diagonalization.
The commutation conditions involve only these four
matrices.

(2) The mass matrix of an n-degree-of-freedom system is nor-
malized to the identity matrix I, and the damping matrix,

D = S + G, is split into its symmetric (S) and skew-
symmetric (G) additive parts; likewise, the stiffness matrix,
R = K + N, is also split into its symmetric (K) and skew-
symmetric (N) parts. The result in (1) above is then used to
obtain the n&s conditions for the simultaneous orthogonal
quasi-diagonalization of the four matrices S, G, K, and N.
These n&s conditions, when satisfied, maximally uncouple
a general MDOF dynamical system, through the use of a
real linear orthogonal coordinate transformation, into inde-
pendent subsystems, each with at most two
degrees-of-freedom. The structure of the matrices of the
resulting uncoupled two-degree-of-freedom subsystems is
obtained. A procedure for the explicit determination of the
orthogonal matrix Q that accomplishes this simultaneous
quasi-diagonalization, when the n&s conditions are satisfied,
is provided.

(3) The n&s conditions obtained are shown to provide a unified
way of determining the n&s conditions for the maximal
uncoupling, through simultaneous orthogonal quasi-
diagonalization, of various categories of linear MDOF dyna-
mical systems, such as gyroscopic potential systems, poten-
tial systems with arbitrary damping matrices, etc.
Consequently, the article presents a general set of n&s con-
ditions from which earlier results in Refs. [1,3–7] can be
directly obtained. These results pertain to the uncoupling of
different categories of structural and mechanical MDOF
systems [9] into independent subsystems of at most
two degrees-of-freedom through simultaneous quasi-
diagonalization.

(4) The matrix quadruple {S, G, K, N} can be simultaneously
orthogonally quasi-diagonalized if and only if the four
matrix triplets {S, G, K}, {S, N, K}, {S, G, N}, and
{K, G, N}, with G ≠ 0, N ≠ 0, and G(N) ≠ 0, and
G(N) ≠ 0, respectively, can individually be orthogonally
quasi-diagonalized.

(5) When the rank, 2m, of the skew-symmetric matrix G(N) is
such that the number of degrees-of-freedom, n, of the
MDOF system exceeds the rank of G(N) by at most 2 (i.e.,
n ≤ 2m + 2)—a common occurrence in many MDOF dyna-
mical systems found in nature and in engineered systems—
the number of n&s conditions to uncouple the system, in
the manner stated above, through the use of a real orthogonal
coordinate transformation drops from 16 in the general case
when n > 2m + 2 to ten.

(6) Noting that the 16 n&s conditions, though reduced to ten,
still constitute significant restrictions on the matrices that
describe a linear MDOF system, the n&s conditions are
further reduced when the results are applied to real-life
systems encountered in nature and in aerospace, civil, and
mechanical engineering. When n > 2m + 2 and the nonzero
eigenvalues of G as well as the nonzero eigenvalues of N
are distinct, or, when the eigenvalues of K(S) are distinct,
the number of n&s conditions for uncoupling the system,
by simultaneous orthogonal quasi-diagonalization, reduce
from 16 to 6; when the eigenvalues of K(S) are distinct
and the nonzero eigenvalues of G(N) are distinct, they
reduce to 5; and, when the eigenvalues of K(S) are distinct,
the nonzero eigenvalues of G are distinct, and the nonzero
eigenvalues of N are distinct—all generic properties of
these matrices—they reduce from 16 to 4.
Furthermore, by positing a structure on the matrices S(K) and
N(G), it is shown that the number of n&s conditions for
uncoupling such MDOF dynamical systems reduce to just
2, and they further reduce to a single n&s condition when,
in addition, the nonzero eigenvalues of G(N) are distinct.
Also, when the eigenvalues of K(S) and the nonzero eigen-
values of G(N) are distinct, two n&s conditions for uncoupl-
ing such MDOF systems are obtained. It is also shown that
when the eigenvalues of K(S) are distinct and the eigenval-
ues of G(N) are distinct, two n&s conditions are required
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for the simultaneous orthogonal quasi-diagonalization of the
MDOF system, and furthermore, the matrix N(G) must have
the posited form.

(7) When the number of degrees-of-freedom of the MDOF
system exceeds the rank of the skew-symmetric matrix
G(N) by at most 2 (n ≤ 2m + 2), a common occurrence in
many structural and mechanical systems, it is shown that
the number of n&s conditions for simultaneous quasi-
diagonalization drops from 16 to 10. Furthermore, if the
nonzero eigenvalues of G and the nonzero eigenvalues of
N are distinct, or, when the eigenvalues of K(S) are distinct,
the number of n&s conditions for uncoupling the MDOF
system, by quasi-diagonalization, reduce to 4; and, when
the eigenvalues of K(S) are distinct and the nonzero eigenval-
ues of G(N) are distinct, they reduce to just 3.
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Appendix
Proof of Result 9. We compute the remaining 14 commutators in

(91) when [K, G2] = [K, GKG] = 0 and show that they all equal
zero for S =

∑n−1
j=0 ajK

j and N =
∑e

j=0 bjG
2j+1 where the a′js and

b′js are arbitrary real constants, and e is a non-negative integer.
Lemma 10(c) says that [Kj, G2l+1KuG2r+1] = 0 for any non-

negative integers j, l, u, and r when [K, G2] = [K, GKG] = 0.
The remaining 14 commutators yield the following results:

[G, N] = G,
∑e
j=0

bjG
2j+1

[ ]
=
∑e
j=0

bj[G, G2j+1] = 0

[K, S] = K,
∑n−1
j=0

ajK
j

[ ]
=
∑n−1
j=0

aj[K, Kj] = 0

[K, GN] = K,
∑e
j=0

bjG
2j+2

[ ]
=
∑e
j=0

bj[K, G2j+2] = 0

[K, N2] = K,
∑e
k=0

∑e
j=0

bjbkG
2k+1G2j+1

[ ]

=
∑e
k=0

∑e
j=0

bjbk[K, G2k+2j+2] = 0

[K, NKN] = K,
∑e
j=0

bjG
2j+1

∑e
k=0

bkKG
2k+1

[ ]

= K,
∑e
j=0

∑e
k=0

bjbkG
2j+1KG2k+1

[ ]

=
∑e
j=0

∑e
k=0

bjbk K, G2j+1KG2k+1[ ]
= 0

[K, GSG] = K, G
∑n−1
j=0

ajK
j

( )
G

[ ]
=
∑n−1
j=0

aj[K, GKjG] = 0

[S, GKG] =
∑n−1
j=0

ajK
j, GKG

[ ]
=
∑n−1
j=0

aj[K
j, GKG] = 0,

by Remark 4, part 4

[S, G2] =
∑n−1
j=0

ajK
j, G2

[ ]
=
∑n−1
j=0

aj[K
j, G2] = 0

[S, N2] =
∑n−1
j=0

ajK
j, N2

[ ]
=
∑n−1
j=0

aj[K
j, N2] = 0

[S, GSG] =
∑n−1
j=0

ajK
j, G

∑n−1
l=0

alK
l

( )
G

[ ]

=
∑n−1
j=0

∑n−1
l=0

ajal[K
j, GKlG] = 0,

by Lemma (10 c)

[S, GN] =
∑n−1
j=0

ajK
j, GN

[ ]
=
∑n−1
j=0

aj[K
j, GN] = 0

[S, NKN] =
∑n−1
j=0

ajK
j, NKN

[ ]
=
∑n−1
j=0

aj[K
j, NKN] = 0

[K, NSN] = K,
∑e
l=0

blG
2l+1

∑n−1
u=0

auK
u
∑e
r=0

brG
2r+1

[ ]

=
∑n−1
j=0

∑e
l=0

∑e
r=0

ajblbr[K, G2l+1KuG2r+1] = 0,

by Lemma 11, and

[S, NSN] =
∑n−1
j=0

ajK
j, NSN

[ ]

=
∑n−1
j=0

aj[K
j, NSN] = 0,

by Remark 4, part 4.
This proves the result. ▪
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